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1. Introduction

Coal mining is a heavy industry that plays an important role on 
an energy market and employs hundreds of thousands of people. Coal 
mining is also an industry, where large amount of data is produced 
but little is done to utilise them in further analysis. Besides, there is a 
justified need to integrate different aspects of coal mine operation in 
order to maintain continuity of mining what can be done by introduc-
tion of a decision support system (DSS).

Currently coal mines are well equipped with the monitoring, su-
pervising and dispatching systems connected with machines, devices 
and transport facilities.  Additionally, there are the systems for moni-
toring natural hazards (methane-, seismic- and fire hazards) operating 
in the coal mines. All these systems are provided by many different 
companies, what causes problems with quality, integration and proper 
interpretation of the collected data. Another issue is that the collected 
data are used chiefly for current (temporary) visualisation on boards 
which display certain places in the mine. Whereas, application of do-
main knowledge and the results of historical data analysis can im-
prove the operator’s and supervisor’s work significantly.

For example, due to the short-term prognoses about methane con-
centration, linked with the information about the location and work 
intensity of the cutter loader, it is possible to prevent emergency en-
ergy shutdowns and maintain continuity of mining (the research on 
this methodology was discussed in [27]). This will enable to increase 
the production volume and to reduce the wear of electrical elements 

whose exploitation time depends on the number of switch-ons and 
switch-offs.

It is possible to see the rising awareness of monitoring systems 
suppliers who has started to understand the necessity to make the next 
step in these systems development. Therefore, the companies provid-
ing monitoring systems seek their competitive advantage in equipping 
their systems with knowledge engineering, modelling and data analy-
sis methods. This is a strong motivation to consider a DSS presented 
in this paper.

The goal of this paper is to present an architecture of the DISESOR 
integrated decision support system. The system integrates data from 
different monitoring systems and contains an expert system module, 
that can utilise domain expert knowledge, and analytical module, that 
can be applied to diagnosis of the processes and devices and to predic-
tion of natural hazards. Special focus of the paper is put on the data 
integration and data cleaning issues, such as outlier detection, realised 
by means of the data warehouse and the ETL process. The work also 
contains a more detailed presentation of the prediction module and 
two case studies showing real applications of the system.

The contribution of the paper consists of the architecture of the 
DISESOR integrated decision support system, its data repository and 
prediction module. Additionally, it covers the presentation of the is-
sues connected with the preparation and cleaning of the data collected 
by monitoring systems, especially outlier detection. Finally, the con-
tribution covers case studies presenting application of the described 
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system to abyssal mining pump stations diagnostics and methane con-
centration prediction in a coal mine.

The structure of the paper is as follows. Section 2 presents the 
works related to the presented topic. The architecture of the DISE-
SOR system and its data repository are presented in section 3. The 
more detailed descriptions of the data preparation and cleaning and 
prediction modules are presented in sections 4 and 5 respectively. The 
case studies of abyssal mining pump stations diagnostics and methane 
concentration prediction task are presented in sections 6 and 7 respec-
tively. Section 8 presents the final conclusions.

2. Related work

The typical environments deployed in a coal mine are monitor-
ing and dispatching systems. These systems collect a large number of 
data which can be utilised in further analysis, e.g., on-line prediction 
of the sensor measurements, which area was surveyed in [11]. Such 
analysis can address different aspects of coal mine operation such as, 
e.g., equipment failure or natural hazards. 

The examples of the research in the field of natural hazards in an 
underground coal mine cover, e.g., methane concentration prediction 
and seismic hazard analysis. The research on the prediction of the 
methane concentrations was presented in  [26, 27, 28]. Application of 
data clustering techniques to seismic hazard assessment was present-
ed in [15]. There are also approaches to prediction of seismic tremors 
by means of artificial neural networks [8] and rule-based systems [9]. 
Each research listed above is a standalone approach not incorporated 
into any integrated system.

Analytical methods that were mentioned require the data which 
are extracted, cleaned, transformed and integrated. Decision support 
systems utilise a data repository of some kind, e.g., a data warehouse 
[13]. The critical dependence of the decision support system on a data 
warehouse implementation and an impact of the data quality on deci-
sion support is discussed in [17].

There are applications of machine learning methods to diagnos-
tics of mining equipment and machinery presented in literature [4, 
5, 12, 19, 30]. The issue of mining industry devices diagnostics was 
raised among others in the works [7, 10, 18, 25, 31]. Besides, some 
initial concepts of the system that processes data streams delivered by 
the monitoring systems were presented in [6].

However, to the best of the authors knowledge there is no exam-
ple of the integrated decision support system for 
monitoring processes, devices and hazards in a 
coal mine (except the work dealing with DSS 
for coal transportation [14], which loosely cor-
responds to the given topic).

3. System architecture

The general architecture of the DISESOR 
integrated decision support system is presented 
in Fig. 1. The architecture of the system con-
sists of: Data repository, Data preparation and 
cleaning module, Prediction module (that are 
presented in more detail in the following sec-
tions), Analytical module and Expert system 
module (shortly presented below, as they are 
not the main focus of the paper).

3.1. Decision support system

The core of analytical, prediction and ex-
pert system modules is based on the RapidMin-
er [22] platform. The RapidMiner environment 
was customised to the requirements of the non-
advanced user by disabling unnecessary options 

and views. Therefore, an advanced user can use the whole function-
ality of RapidMiner, whereas the non-advanced user can use such 
thematic operators as e.g., “Solve a methane concentration predic-
tion issue” or “Solve a seismic hazard issue”. Additionally, due to the 
target application of the system in Polish coal mines the RapidMiner 
environment was translated into Polish (for this reason several figures 
in this work contain Polish names). Finally, RapidMiner was extended 
in the created application by additional operators wrapping R [21] and 
MOA (Massive On-line Analysis) [1] environments.

The goal of the Data preparation and cleaning module, which is 
referred further as ETL2, is to integrate the data stored in data ware-
house and process them to the form acceptable by the methods cre-
ating prediction and classification models. In other words the ETL2 
module prepares the training sets.

Prediction module is aimed to perform incremental (on-line) learn-
ing of predictive models or apply classification and prediction models 
created in analytical module for a given time horizon and frequency of 
the values measured by the chosen sensors. This module also tracks the 
trends in the incoming measurements. The created predictive models 
are adapted to the analysed process on the basis of the incoming data 
stream and the models learnt on historical data (within the analytical 
module). The module provides the interfaces that enable the choice of 
quality indices and their thresholds that ensure the minimal prediction 
quality. If the quality of predictions meets the conditions set by a user, 
the predictions will be treated as the values provided by a soft sensor. 
They can be further utilised by e.g., expert system but also they can be 
presented to a dispatcher of a monitoring system.

Expert system module is aimed to perform on-line and off-line 
diagnosis of machines and other technical equipment. It is also aimed 
to supervise the processes and to support the dispatcher or expert de-
cision-making with respect to both technical condition of the equip-
ment and improper execution of the process. The inference process 
is performed by means of classical inference based on stringent rules 
and facts, fuzzy inference system or probabilistic inference based on 
belief networks. Additionally, the system contains a knowledge base 
editor that allows a user to define such rules and networks. 

Analytical module is aimed to perform analysis of historical data 
(off-line) and to report the identified significant dependencies and 
trends. The results generated by this module are stored in the reposi-
tory only when accepted by a user. Therefore, this module supports 
a user in decision-making of what is interesting from monitoring and 

Fig. 1. Architecture of the DISESOR integrated decision support system
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prediction point of view. Besides, it provides additional information 
that can be utilised to enrich the knowledge of expert system or that 
can be utilised to comparative analysis. The module supports identifi-
cation of changes and trends in the monitored processes and tools and 
it also enables to compare the operator’s and dispatcher’s work.

3.2. Data repository

Data repository was designed as a data warehouse of a snowflake 
structure, that is presented in a general form in Fig. 2. The structure of 
a data warehouse results from the analysis of databases of the existing 
monitoring systems and the characteristics of the known sensors. The 
full list of tables with their description is presented in Table 1.

The central table of the data repository is Measurement where all 
the measurements are stored. The dimensions related to the Measure-
ment table are Date, Time and Source. Date and Time describe when 
the measurement was registered, whereas Source describes what reg-
istered the given measurement. The Source table contains among oth-
ers such information about sensors/devices as:

name (e.g. MM256),•	
description (e.g. methane meter number 256),•	
type name (e.g. methane meter),•	
measured quantity (e.g. methane concentration),•	
measurement unit (e.g. %CH4),•	
name of a system that collects the data (e.g. THOR),•	
range of measurements.•	

The Source table is described by means of Location dimension, 
that describes where in a coal mine it is located. The location has 
hierarchical structure, some sample hierarchy is presented in Fig. 3. 
The top-most level of the hierarchy is formed by coal mine divisions. 
Divisions consist of seams, which are divided into mining areas. At 
the bottom of the hierarchy there are mining workings.

The data warehouse is loaded with data by means of the ETL 
process designed for the main monitoring and dispatching systems for 
coal mining, which are deployed in Poland, Ukraine and China, e.g., 
THOR dispatching system [24] or Hestia natural hazards assessment 
system [9]. The ETL process was designed by means of Open Talend 
Studio [29].

During the tests of the created solution the data warehouse was 
loaded with 800 million records what resulted in 200 GB of data. It 
enabled the performance tests and optimisation of both the logical 

data warehouse structure and database management 
system (PostgreSQL [20]). As a result the Meas-
urement data table was partitioned according to the 
months of measurements and the indices for foreign 
keys in this table were created. On the DBMS side 
several configuration parameters were adjusted, e.g., 
shared_buffers, work_mem, checkpoint_segments, 
effective_cache_size.

4. Data preparation and cleaning

The goal of ETL2 (Data cleaning and preparation) 
module is to deliver integrated data (in a form of a 
uniform data set) coming from chosen sources (espe-
cially sensors) in a chosen time range. Therefore, in 
this section the issues of frequency adjustment, aggre-
gation and missing values imputation are presented. 
The outlier detection issues are extended in the sub-

section 4.1.
Measurements can be collected with dif-

ferent frequencies. Additionally, some systems 
collect a new measurement only after signifi-
cant (defined in a monitoring system) change 
of the measured value. Table 2  presents how 
the measurements of two methanometers can 
look like, when collected directly from the data 
warehouse. The ETL2 process uniforms the data 
to the form, where each recorded measurement 
represents the time period defined by a user, 
e.g., 1 second (Table 3).

Within the ETL2 module there are also ex-
ecuted procedures of data cleaning, that iden-
tify outlier values and impute the missing val-
ues. These tasks are realised both by means of 
the simple functions presented below and by 
means of operators available in RapidMiner 
environment.

Another operations performed by means of the methods includ-
ed in the ETL2 module are data aggregation (e.g., 10 measurements 
are replaced with 1 measurement) and manually performed defini-
tion of derived variables (e.g., a new variable can be calculated as a 
sum of the values of two other variables). The general scheme of data 
processing within ETL2 module is presented in Fig. 4.

Table 1. Tables creating a data warehouse structure

Measurement Value of a measurement 

state state of a measurement, e.g., alarm, calibration, breakdown

Discretisation The measured values can be of discrete type 

Time Time of a measurement, range [00:00:00, 23:59:59], 1 second resolution 

Time_category Category, e.g., mining or no mining

Date Date of a measurement 

location location of the measurement source 

location_attribute Characteristics of the given location 

location_hierarchy Hierarchical structure of location 

source Measurement source, e.g., sensor or device 

source_attribute Characteristics of the given source 

Fig. 2. Simplified schema of data repository

Fig. 3. Location hierarchy in a coal mine
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All the phases of processing presented in Fig. 4 are performed 
as separate RapidMiner operators. As a result of the processing per-
formed by means of the ETL2 module we receive a data set that can 
be either analysed (by means of analytical module), or utilised to pre-
diction model creation (by means of prediction module), or  utilised 
within diagnostic process (by means of expert system module). 

In order to select the variables that should be analysed a user can 
utilise THOR dispatching system, where each sensor (and attributes) 
are presented on a map of the region of interest. An exemplary screen 
of the THOR system is presented in Fig. 5. The system that is be-
ing created enables in turn, data (time-series) visualisation in order 
to select the time periods, that are the most interesting from the ana-
lyst point of view. Fig. 6 presents 
the visualisation of time-series 
consisting of several thousands of 
records. The developed operator 
creating such visualisation utilises 
R environment [21].

Aggregation of the measure-
ments replaces several values with 
a single one. The period of aggre-
gation is chosen by a user, who sets 
a number of measurements that 
should be aggregated or a time unit 
defining the windows containing 
measurements to be aggregated. 
The following aggregation opera-
tors are available for each attribute: 
average, minimum, maximum, 
median, dominant, the number of 
occurrences. For each record being 
the result of the aggregation there 
is calculated a weight, that is in-
versely proportional to the number 
of missing values existing in the 

aggregated data. The weight calculation is also based on a weighted 
average for all the attributes. This approach enables us to reduce the 
number of missing values in data and introduce weights that can be 
utilised by the chosen methods (e.g. rule induction).

The operator that imputes missing values performs the analysis 
of each attribute separately. The following methods that change the 
value or imputing the missing value can be utilised:

a logical expression defining the replacing values (e.g. replace •	
each value <1 with „low state”), 
the way how to receive the replacing values:•	

the value set by a user, ◦
the last valid measurement, ◦
average of the neighbouring measurements (with the param- ◦
eter defining the number of neighbours),
linear regression of the two points (the last one before miss- ◦
ing values section and the first one after this section),
linear regression of the data preceding missing values (with  ◦
the parameter defining the window size).

The maximal number of consecutive missing values that can be 
imputed is defined as a separate parameter, as imputing the values for 
the long breaks in the measurements has no practical meaning. If the 

Fig. 4. General characteristics of the data processing in ETL2 module

Fig. 5. Visualisation available in THOR dispatching system presenting a topology of the sensors

Table 2. Data collected directly from data warehouse (- means that the mea-
surement value does not change, ? means a missing value)

MN234 [%CH4] MN345 [%CH4] T [s]

0.1 0.1 0

0.2 - 1

- 0.2 4

0.5 ? 7

0.3 0.3 9

Table 3. Data prepared to the further transformation, cleaning, etc.

MN234 [%CH4] MN345 [%CH4] T [s]

0.1 0.1 0

0.2 0.1 1

0.2 0.1 2

0.2 0.1 3

0.2 0.2 4

0.2 0.2 5

0.2 0.2 6

0.5 ? 7

0.5 ? 8

0.3 0.3 9
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resulting data set still contains missing values, the analyst can use a 
number of methods that are able to analyse data with missing values.

Introduction of a new derived variable can cover, among others, 
introduction of delays (the values of the previous measurements) or 
calculation of increments and trends (e.g. as an ordinal - increases, 
decreases). Another operator enables data smoothing by means of dif-
ferent filters (e.g. average, median). Finally, the last operator enables 
creation of dependent variable (decision variable). Typically, this var-
iable contains the moved forward values of the chosen attribute, what 
enables to receive a proper prediction horizon. The operator defining 
the dependent variable has 
expanded functionality 
what enables e.g. to define 
the dependent variable as 
a maximal value of a giv-
en attribute in a defined 
time interval (e.g. 3 to 6 
minutes in advance).

It is also important 
that within the developed 
framework the operators 
can be applied multiple 
times and in unrestricted 
order. Moreover, it is pos-
sible to pre-process data 
by means of the operators 
delivered by RapidMiner, 
that are dedicated to mul-
tidimensional analysis/
identification of outliers 
and missing values (e.g. 
the operator applying lo-
cal k-NN to missing val-
ues imputation).

When data pre-
processing is finished, the 
whole process is saved 
according to XML-based 
RapidMiner standard, that 
was created for the needs 
of the system. Thereby, 
the prediction module and 

expert system module are able to transform the incoming data 
to the form that is acceptable by prediction and inference solu-
tions. The incoming data in this case are collected on-line di-
rectly from the monitoring systems.

4.1. Outlier detection methods

Analysis of data coming from several underground coal 
mines showed that the missing values are relatively rare be-
cause most of the monitoring systems are the safety ones, where 
undisturbed data transfer is of the high importance. The meth-
ods that are based on linear interpolation or the last measured 
value approach fit well to the imputation of missing value task. 
Among 800 million data measurements that were loaded to 
DISESOR data repository only 0.5% contained missing values. 
These missing values consisted of single missing measurements, 
tens of missing measurements or longer periods of missing val-
ues being a result of transmission break (in this last case there is 
no effective method of missing value imputation). 

The issue that is much more complex is detection of out-
lier values that can be a result of measurement interference. 
RapidMiner environment, except manual (expert) elimination 
of missing values that were mentioned above, offers several 
methods of automatic outlier detection. Such analysis is mul-

tidimensional, what means that impact of each variable of a given 
record is verified. Four methods of this type were evaluated during 
this research. These methods are characterised by high effectiveness 
in outlier detection and efficiency, as they do not require extensive 
computations. The methods that were chosen are the following [22]:

Detect Outliers – Density (CDODe) – the method identifying •	
the outliers on the basis of their density. The method requires 
two parameters. A record is identified as an outlier if there is at 
least the defined ratio of other records (where the ratio is given 

Fig. 6. Visualisation of exemplary time-series: methane concentration, air flow and min-
ing cycle on a chosen longwall

Fig. 6. Visualisation of exemplary time-series: methane concentration, air flow and mining cycle on a chosen longwall
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as a parameter p) being more dis-
tant from this record then defined 
parameter d.
k-NN Global Anomaly Score •	
(GAS) – the method based on 
kNN approach. Each record is 
associated with its average dis-
tance to the rest of the records (by 
means of kNN method). Next, the 
record is identified as an outlier 
(or not) on the basis of interquar-
tile range analysis.
Local Density Cluster-Based Out-•	
lier Factor (LDCOF) – the method 
utilizing cluster analysis. A record 
is identified as an outlier on the 
basis of its distance to the cen-
troid of the nearest large cluster. 
The distance is normalised by av-
erage distance to centroid among 
the members of this cluster. This 
method identifies small clusters 
as outliers.
Histogram-based Outlier Score •	
(HBOS) – the method based on a frequency histogram. The 
histogram can be created for the number of bins defined by a 

user or derived dynamically. The records belonging to the bin 
of the smaller size are labeled as outliers.

A more detailed description of the methods presented above can be 
found in RapidMiner documentation [22].

The methods listed above were applied to the analysis of time 
series of measurements registered on the operator platform in mine 
dewatering station [24]. Each record is characterised by the follow-
ing variables (see Fig. 7): CO2 – CO2 concentration on the operator 
platform, Ps – atmospheric pressure, RHO – humidity on the operator 
platform, TP – temperature on the operator platform.

In order to verify the efficiency of outlier detection methods the 
outlier values in quantity 0.5%, 1%, 3% of original datasets were in-
troduced to them. The outlier values were generated with use of noise 
with normal distribution.

The datasets were divided into training (2/3 of original time series 
– initial part) and test (1/3 of original time series – last part) datasets. 
The task was defined as a classification one, where two classes were 
defined – outlier values and correct values. Due to the imbalanced 
distribution of the examples from the two classes the results are pre-
sented as balanced accuracy reflecting average classification accu-

racy in each of the classes. The value 50 
means that all the examples were classi-
fied to one class what makes the method 
useless.

During the first phase, where training 
data were analysed, the optimal param-
eters of the outlier detection algorithms 
were searched. The parameters were 
searched for each of the three experi-
ments (0.5%, 1%, 3%). When the param-
eters were calculated, they were applied 
to test data analysis. The results of the 
analysis are presented in Table 4.

The second experiment was designed 
in such way that the outlier values were 
generated randomly from a given range 
encompassing the original measure-
ments. Fig. 8 presents CO2 time series 
containing 3% of outlier values.

The results of the analysis are pre-
sented in Table 5. It is clear that this task 
is much more difficult than the previous 

Table 4. Evaluation of outlier detection methods – noise with normal distribution 

Algorithm Parameters

balanced accuracy

0.5% 1% 3% 0.5% 1% 3%

Training data Test data

GAs

0.5% - 94.44 65.74 100 100 71.30

1% 100 - 77.78 100 100 90.74

3% 100 100 - 100 100 100

Hbos

0.5% - 99.50 99.58 99.53 99.50 98.84

1% 98.29 - 97.47 98.49 100 98.59

3% 100 97.22 - 100 80.56 100

lDCoF

0.5% - 100 100 100 100 100

1% 100 - 100 99.94 99.94 100

3% 95.07 95.24 - 95.05 94.99 96.56

cDoDe

0.5% - 100 100 99.28 100 100

1% 100 - 100 99.28 100 100

3% 100 100 - 100 100 100

Table 5. Evaluation of outlier detection methods – random values within a given range

Algorithm Parameters

Co2 data

0.5% 1% 3% 0.5% 1% 3%

Training Testing

GAs

0.5% - 81.51 71.25 75.93 81.39 71.25

1% 78.49 - 83.58 78.21 78.30 78.31

3% 63.77 78.81 - 76.04 74.79 72.80

Hbos

0.5% - 85.40 84.93 80.49 80.96 77.45

1% 85.23 - 82.44 84.18 84.65 81.41

3% 81.40 85.95 - 81.40 81.13 74.87

lDCoF

0.5% - 81.51 76.11 75.93 81.39 71.25

1% 78.49 - 83.58 78.21 78.30 78.31

3% 63.77 78.81 - 76.04 74.79 72.80

cDoDe

0.5% - 86.19 86.39 83.71 83.55 80.58

1% 77.69 - 81.14 83.16 80.52 75.61

3% 81.46 81.39 - 81.48 81.53 80.34

Fig. 8. CO2 time series, with generated outlier values 
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one. It can be noticed that the CDODe method is the most stable ap-
proach and it gives the best results of outlier identification.

The CDODe algorithm is a default approach to outlier identifica-
tion in multidimensional time series in the DISESOR system.

5. Prediction module

Prediction module is based on, so called, prediction services. Pre-
diction service is a webservice that predicts values of a variable (dis-
creet or continuous) on the basis of input vector. Prediction service is 
inseparably connected with a model (regression or classification one) 
that is the basis of the prediction.

The basic scenario of prediction service application is as follows:
Client sends a prediction execution request accompanied by a 1. 
vector of conditional attributes and a timestamp.
Service calculates the prediction delivering a vector of condi-2. 
tional attributes as a model input. The attribute values come 
directly from a monitoring system, because the data ware-
house is not loaded online. The values of the attributes are 
transformed according to the dedicated ETL2 process to the 
form acceptable by the prediction model.
Service loads the results to a database.3. 

The architecture of the Prediction module is presented in Fig. 9.

Database, which is an internal RapidMiner repository, stores the 
description of a model and the transformations of the attributes. Ad-
ditionally, it stores the information about training data, the parameters 
of the minimal model quality and both predicted and real values of 
dependent variable. Each model adaptation results in a new database 
entry what makes the history of the changes available to the users. 

Predictions can be visualised and compared on a single chart with 
the real values that are measured. Such visualisation can be performed 
by a monitoring or dispatching system (e.g. THOR dispatching sys-
tem), where predicted values are delivered as measurements of a vir-
tual sensor and the values of both sensors (virtual and real) can be 
easily compared. 

It is assumed for the current module version, that if the quality of 
the predictions decreases below a given threshold, then a new training 

set is automatically collected. The size of this new data set is the same 
as size of the original data. The model adaptation is performed by 
modifying only the parameters of the existing model (the method and 
algorithm is not changed). Next, the quality of the model is verified 
on the same data that triggered the model adaptation (these data are 
not the part of the new training data set). If the quality of the adapted 
model is satisfactory, then this new model is applied to prediction. 
Otherwise, a message is generated stating that prediction cannot be 
continued and it is needed to come back to analytical module in order 
to create a new prediction model.

The configuration wizard enables to define the so-called quality 
monitoring rules. From the practical point of view there is no point 
in presenting the minimum model quality by means of the measures 
that are well-known by machine learning community, such as overall 
classification accuracy, g-mean, specificity, sensitivity, RMSE, MAE 
etc. Therefore, quality monitoring rules are based on: a sliding time-
window (e.g. 1 hour) in which the quality is verified, frequency of 
the prediction calculation (e.g. 1 minute) and the indicators which 
are typically called FalsePositive and  FalseNegative. The values 
of these indicators are explicitly defined by a user for each decision 
class or only for a target class, e.g. corresponding to “danger”. There-
fore, knowing the values of FalsePositive and FalseNegative [3], and 

a number of predictions that are calculated in a 
given time-window it is possible to calculate the 
values of almost all the possible quality meas-
ures of prediction model. In case of regression 
task the module allows so-called insensitivity, 
what means that the predictions that differ less 
than the given threshold from the real values are 
not treated as an error. Additionally, it is pos-
sible to define that the values within the given 
range (e.g. corresponding to the “normal” state) 
are not counted as errors.

6. Example of the system application 
to the task of abyssal mining pump 
stations diagnostics

Abyssal mining pump stations represent a 
fundamental solution to the problem of a coal 
mine dewatering. Due to the large responsibility 
in maintaining the water at a certain level, that 
guarantees the safe operation of the mine, the 
systems that oversee the abyssal mining pump 
stations are safety systems. The pump monitor-
ing systems are installed in several dewatering 
stations and during the normal operation they 
register the following pump unit parameters:

pump unit temperature,•	
the power consumed by the motor,•	
the current drawn by the motor,•	

the productivity of a pump unit.•	
The values of the parameters listed above are acquired each sec-

ond. Due to the safety constraints the temperature of the pump motor 
should not exceed 75 °C and a pump should be turned on when its 
temperature decreases below 25 °C.

Each underground water well contains four pumping units (see 
Fig. 10).

Analysis of the collected measurements enables the evaluation of 
the pump diagnostic states. The following feature vector was used 
during the analysis of pump diagnostic states:

Pi = [TU,i , T0,i t20-30,i, t30-40,i, t40-50,i, t50-60,i, t60-70,i, PU,i QU,i, Li, Dpi, Dki], 

Fig. 9. Architecture and operation of prediction module
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where:
T - U – temperature of a pump unit in a 
steady state,
T - 0 – initial temperature of a pump unit,
t - x-y – time period when the pump tem-
perature changes by 10 degrees (if the 
pump temperature has not reached a given 
range, a 0 value was inserted),
P - U – power of a pump unit in a steady 
state,
Q - U – performance of a pump unit in a 
steady state,
L -  – number of starts on the previous day,
D - p – time and date when the pump was 
turned on,
D - k – time and date when the pump was 
turned off.

Temperature of a pump unit in a steady state 
(TU) was calculated as an average value of the 
last two minutes of operation. Each record PU 
reflects a single pumping cycle (starting from 
the unit turn on to turn off).

Analysis of historical data and interview with 
the dispatchers of the station (experts) enabled to 
define three diagnostic states: a new pump unit 
(also after repair), correct operation and suitable for repair.

The main impact on the diagnostic state of a pump unit have 
time periods tx-y. Along the pump unit operation, when it becomes 
exploited, the time periods tx-y become shorter and the critical tem-
perature when the pump must be turned off is reached faster. This 
results in pump numerous turn on during the days preceding decision 
of its repair. Therefore, the number of times the pump was turned on 
is an important diagnostic indication. It has to be regarded, however, 
in conjunction with the information about the temperature of a pump 
unit in a steady state in order to omit other than high temperature turn 
off reasons.

Pump state diagnostics was based on a Mamdani-type fuzzy sys-
tem [16] with the following rules (the notation (p1, p2, p3, p4) reflects 
trapezoidal membership function):

IF  T20_30 ∈ ( 199, 255, 255, 409 )       THEN a new pump unit
IF  T20_30 ∈ ( 0, 197, 255, 409 ) and 
   T30_40 ∈ ( 245, 246, 256, 362 ) and 
   T60_70 ∈ ( 826, 1159, 1473, 679715 )  THEN a new pump unit

IF  T20_30 = 0 and L∈( 1, 1, 1, 2 )       THEN correct operation
IF  T20_30 = 0 and 
   T40_50 ∈ ( 0, 0, 387, 727 ) and
   L ∈ ( 1, 1, 3, 3 )                  THEN correct operation
IF  T20_30 ∈ ( 0, 255, 255, 409 ) and 
   Tu ∈ ( 73.1, 73.41, 74.54, 81.9 )       THEN correct operation

IF  T20_30 = 0 and 
   T50_60 ∈ ( 0, 390, 390, 551 ) and 
   L ∈ ( 3, 5, 5, 7 )                 THEN suitable for repair
IF  T0 ∈ ( 15.14, 19.75, 19.75, 27.26 ) and
   T20_30 = 0 and 
   T30_40 ∈ ( 206, 366, 366, 11417 ) and
   L ∈ ( 3, 5, 7, 7 )                 THEN  suitable for repair

Fig. 11 presents the division of attribute L (number of starts on the 
previous day) into fuzzy sets.

In practice, the state suitable for repair does not lead to immedi-

ate brake down of a pump unit. Dispatchers suggested that a pump 
classified to this state is able to (or sometimes has to – waiting for a 
service) operate up to next 3 months (when a typical operation time 
lasts 2 years). In order to improve the accuracy of service prediction 
(pump break down) a decision tree was created by means of a decision 
tree induction algorithm. Tree induction was performed only on the 
examples labeled as suitable for repair. The resulting tree classifies 
each vector Pi to one of two decision classes: less than a month to 
break down and more than a month to break down. The induced tree 
utilises only the time periods tx-y. An applied train-and-test method 
showed the classification accuracy on a level of 90% (the class dis-
tribution was balanced, therefore, this measure is appropriate to clas-

Fig. 10. Abyssal mining pump station

Fig. 11. presents the division of attribute L (number of starts on the previous day) into fuzzy sets.
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sification quality evaluation). The induced tree (the main node) was 
slightly modified, what increased accuracy by 2%, and it was applied 
to the expert system. The decision tree that was induced is presented 
in Fig. 12, where decision classes: less than a 
month to break down and more than a month to 
break down are represented as Failure and No 
failure respectively.

The expert system works according to the 
following steps: after each pumping operation 
the diagnostic state of a pump unit is evaluated. 
If a pump is classified as suitable for repair, 
then the decision tree is applied. It identifies the 
expected time period of the pump operation. 
If  the pump is classified as less than a month 
to break down then the pump should be turned 
off because the costs of the repair of the broken 
unit are very high.

7. Example of the system application 
to the task of methane concentra-
tion prediction in mining excava-
tion

The DISESOR system can be applied to 
solve a variety of tasks. This section presents an 
example, of the system application to methane 
concentration prediction.

Methane concentration monitoring is one of 
the main tasks of the natural hazard monitoring 
systems in mining industry. Such system is in 
charge of automatic and immediate shut-down 
of electricity within a given area, if a methane concentration exceeds 
a given alarm threshold. The power turn-on is possible after a cer-
tain time (from 15 minutes to even several hours), when the methane 
concentration decreases to the acceptable level. This results in large 
losses associated with downtime of production. Information from a 
soft (virtual) sensor presenting to a dispatcher the prediction of the 
methane concentration with a few minute horizon can prevent elec-

tricity shut-down or can allow to lower the mining activity and 
increase the air flow if possible. Therefore, these actions allow 
to avoid undesirable situations and unnecessary downtimes.

The task of maximal methane concentration prediction 
with the horizon from 3 to 6 minutes was realised within the 
DISESOR system. By means of ETL2 module a set of the fol-
lowing sensors was selected: AN321, AN541, AN547, AN682, 
BA1000, BA603, BA613, BA623, MM11, MM21, MM25, 
MM31, MM36, MM38, MM39, MM41, MM45, MM52, MM53, 
MM54, MM55, MM57, MM58, MM59, MM61, MM81.

The data were aggregated applying minimum operation to 
anemometer (AN) measurements, average operation to barom-
eter (BA) measurements and maximum operation to methanom-
eter (MM) measurements. The missing values were imputed ap-
plying linear regression method. As a dependent variable MM59 
sensor was chosen. A map presenting the topology of the mining 
area and location of the sensors is presented in Fig. 13.

As analytical module is currently being developed, the meth-
od of regression tree induction was chosen arbitrarily to create 
the prediction model. The initial tree was created on the basis of 
data coming from 1 shift. The model and the list of sensors (vari-
ables) together with the defined transformations were forwarded 
to prediction model running a proper service. The time-window 
defined for prediction quality monitoring was set to 1 hour and 
the model adaptation was executed each hour regardless the 
minimum quality requirements. The adaptation could be ex-
ecuted more often if the minimum quality requirements were not 
met but there was no such situation. The data that were predicted 

were delivered on-line by the simulator of THOR system in order to 
simulate the real stream of measurements.

Fig. 14 presents the process of data preparation and the predic-
tion model creation together with the initial regression tree that was 
created. Whereas, Fig. 15 presents the plot of the real methane con-
centration and the predicted maximum concentration together with 
the histogram of errors that are reported to a user. Currently, the user 
interface is in Polish as the system deployment in Poland was planned 

Fig. 13. Topology of the mining area and location of the sensors – MM59 sensor chosen as dependent vari-
able is outlined a thick line

Fig. 12. The decision tree applied to the expert system
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in the project. However, the English and Chinese versions are 
also planned.

Fig. 15. The plot of the real methane concentration and the 
predicted maximum concentration together with the histogram 
of errors that are reported to a user

8. Conclusion

The system that is being developed delivers the solutions 
for decision support of a dispatcher and process operator. This 
system is complete as it delivers the tools that can be applied to 
data storage, processing and preparation, and also to definition 
of the models based on expert knowledge (expert system) and 
the models based on the results of both historical and on-line 
data analysis. Due to the application and proper customisation 
of existing tools (RapidMiner, R) and development of the pro-
prietary solutions (e.g. ETL2, rule induction and rough set op-
erators [23] that are not available in RapidMiner) a user receives 
a broad set of tools that can be applied to different tasks. Finally, 
the case studies that were presented show that the system can be 
practically utilised in a coal mine industry.

The DISESOR system provides analytical tools available 
for advanced users as well as for users who are not data analysts 
(through many wizards that facilitate the use of the system). 
However, a routine use of the system requires, in our opinion, a 
new, gaining popularity, workplace, which is data scientist [2].
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