PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of porosity and composition on seismic wave velocities and elastic moduli of lower cretaceous rocks, central Lebanon

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We collected 40 rock samples from the Cretaceous strata exposed at central Lebanon in order to study the effects of porosity and rock composition on their seismic wave velocities and elastic moduli. Several sedimentological and mineralogical studies were conducted to evaluate the rock composition, provenance, depositional conditions, and the diagenetic history of the studied rocks. Porosity, bulk and grain densities and seismic wave velocities were measured for 35 drilled core samples at ambient conditions in the laboratory. Velocity measurements were conducted on the dry core samples utilizing the pulse transmission technique. Petrographically, four lithofacies have been identified under the polarizing microscope. From oldest to youngest, these comprise arenitic sandstone, lithic limestone, oolitic limestone, and micritic limestone. Investigations of representative rock samples under the SEM revealed that a number of diagenetic processes have impacted the studied rocks, and thereby affected their petrophysical properties. The XRD analysis, on the other hand, revealed that quartz and calcite are the dominant minerals in the sandstones of the Chouf Formation and the limestones of the Abeih and Mdairej Formations, respectively. The measured porosity, bulk density, and compressional and shear wave velocities of the investigated rocks vary, respectively, between 2.14–10.05%, 2.41–2.67 g/cm3, 3885–6385 m/s and 2246–3607 m/s. The grain density was calculated from the measured porosity and bulk density data and varies narrowly between 2.64 and 2.78 g/cm3. We further calculated the Poisson’s ratio and the moduli of shear, bulk, and Young from the measured bulk density and seismic wave velocities. Calculated values of these parameters vary between 0.18–0.28, 1.23–3.43 × 1010 Pa, 2.03–6.18 × 1010 Pa and 3.06–8.69 × 1010 Pa, respectively. The generalized mixture rule is used to provide a unified description of the physical properties of the studied rocks regarding their component properties, volume fractions, and microstructures. We constructed a number of relationships between the measured petrophysical and elastic properties to evaluate the mutual interdependence of these parameters and assess the effects of porosity and rock type on these important rock characteristics.
Czasopismo
Rocznik
Strony
867--894
Opis fizyczny
Bibliogr. 121 poz.
Twórcy
autor
  • Department of GeologyAmerican University of Beirut Beirut Lebanon
autor
  • Department of GeologyAmerican University of Beirut Beirut Lebanon
  • Geology Department, Faculty of ScienceYarmouk University Irbid Jordan
  • Civil Engineering Department, Faculty of Engineering Najran University Najran Saudi Arabia
  • Geology Department, Faculty of Science, Assiut Branch Al Azhar University Cairo Egypt
autor
  • Department of Geosciences and Environment University of Cergy-Pontoise Cergy-Pontoise France
Bibliografia
  • 1. Abu Seif ES (2016) Evaluation of geotechnical properties of Cretaceous sandstone, Western Desert, Egypt. Arab J Geosci 9:299. https://doi.org/10.1007/s12517-016-2317-x
  • 2. Adachi T, Sakka S (1990) Dependence of the elastic moduli of porous silica gel prepared by the sol–gel method on heat-treatment. J Mater Sci 25(11):4732–4737
  • 3. Anselmetti FS, Eberli GP (1999) The velocity-deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs. AAPG Bull 83(3):450–466
  • 4. Arns CH, Knackstedt MA, Pinczewski WV (2002) Accurate V p:V s relationship for dry consolidated sandstones. Geophys Res Lett. https://doi.org/10.1029/2001GL013788
  • 5. Asmani M, Kermel C, Leriche A, Ourak M (2001) Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. J Eur Ceram Soc 21(8):1081–1086
  • 6. Baccelle L, Bosellini A (1965) Diagrammi per la stimavisiva della composizione percentuale nelle rocce sedimentarie. Ann Univ Ferrara Sezione 1X Sci Geol Paleontol 1:59–62
  • 7. Baechle GT, Weger RJ, Massaferro L, Eberli GP (2004) The role of macroporosity and microporosity in constraining uncertainties and in relating velocity to permeability in carbonate rocks. Society of Exploration Geophysics Extended Abstracts, vol 23, p 1662
  • 8. Baechle GT, Colpaert A, Eberli GP, Weger RJ (2008) Effects of microporosity on sonic velocity in carbonate rocks. Lead Edge 27(8):1012–1018
  • 9. Bashah NSI, Pierson B (2012) The impact of pore geometry and microporosity on velocity–porosity relationship in carbonates of Central Luconia, Sarawak. Adapted from extended abstract, AAPG international conference on exhibition, Singapore
  • 10. Bell FG (1978) The physical and mechanical properties of the fell sandstones, Northumberland, England. Eng Geol 12:1–29
  • 11. Berge PA, Bonner BP, Berryman JG (1995) Ultrasonic velocity–porosity relationships for sandstone analogs made from fused glass beads. Geophysics 60(1):108–119
  • 12. Beydoun ZR (1999) Evolution and development of the Levant (Dead Sea Rift) transform system: a historical–chronological review of a structural controversy. In: Mac Niocaill C, Ryan PD (eds) Continental tectonics, Special publications, vol 164. Geological Society, London, pp 239–255
  • 13. Birch F (1960) The velocity of compressional waves in rocks to 10 kilobar, part 1. J Geophys Res 65:1083–1102
  • 14. Boisson J, Platon F, Boch P (1976) Measurements of elastic constants and an elastic capacity of some ceramics with various porosities. Ceramurgia 6:74–80
  • 15. Bou Daher S, Ducros M, Michel P, Hawie N, Nader FH, Littke R (2016) 3-D thermal history and maturity modelling of the Levant Basin and its eastern margin, offshore–onshore Lebanon. Arab J Geosci 9:440. https://doi.org/10.1007/s12517-016-2455-1
  • 16. Burke MM, Fountain DF (1990) Seismic properties of rocks from an exposure of extended continental crust—new laboratory measurements from the Ivrea zone. Tectonophysics 182:119–146
  • 17. Cadoret T, Marion D, Zinszner B (1995) Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. J Geophys Res 100(B6):9789–9803
  • 18. Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics 50:571–581
  • 19. Chen N, Zhu W, Wang TF, Song S (2005) Hydromechanical behavior of country rock samples from the Taiwan Chelungpu Drilling Project, Eos Trans. AGU 86(52), Fall meeting supplement, Abstract T51A-1324
  • 20. Christensen NI (1974) Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars. J Geophys Res 79:407–412
  • 21. Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101(B2):3139–3156
  • 22. Daëron M, Klinger Y, Tapponnier P, Elias A, Jacques E, Sursock A (2007) 12,000-year-long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon. Bull Seismol Soc Am 97:749–771
  • 23. Dubertret L (1955) Carte geologique du Liban au 1/200000 avec notice explicative. Republique Libanaise, Ministere des Travaux Publiques, Beirut, p 74
  • 24. Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of carbonate rocks—a symposium, vol 1. AAPG Memoir, Tulsa, pp 108–121
  • 25. Dunn ML, Ledbetter H (1995) Poisson’s ratio of porous and microcracked solids: theory and application to oxide superconductors. J Mater Res 10(11):2715–2722
  • 26. Dutta T, Mavco G, Mukherji T (2009) Compaction trends for shale and clean sandstone in shallow sediments, Gulf of Mexico. Lead Edge 28:590–596
  • 27. Dvorkin J, Nur A (1998) Time-average equation revisited. Geophysics 63:460–464
  • 28. Eberhart-Phillips D, Han DH, Zoback MD (1989) Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics 54:82–89
  • 29. Eberli GP, Massaferro JL, Sarg JF (2004) Introduction—seismic images of carbonate reservoirs and systems. In: Eberli GP, Massaferro JL, Sarg JF (eds) Seismic imaging of carbonate reservoirs and systems. AAPG Memoir, Tulsa
  • 30. Erickson SN, Jarrad RD (1998) Velocity–porosity relationships for water-saturated siliciclastic sediments. J Geophys Res 103:30385–30406
  • 31. Ersoy H, Yalçinalp B, Arslan M, Babacan AE, Çetiner G (2016) Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey). J Asian Earth Sci 123:223–233. https://doi.org/10.1016/j.jafrearsci.2016.07.026
  • 32. Esestime P, Hewitt A, Hodgson N (2016) Zohr—a newborn carbonate play in the Levantine Basin, East-Mediterranean. First Break 34:87–93
  • 33. Eysa EA, Ramadan FS, El Nady MM, Said NM (2016) Reservoir characterization using porosity–permeability relations and statistical analysis: a case study from North Western Desert, Egypt. Arab J Geosci 9:403. https://doi.org/10.1007/s12517-016-2430-x
  • 34. Fabricius IL, Baechle GT, Eberli GP (2010) Elastic moduli of dry and water-saturated carbonates—effect of depositional texture porosity and permeability. Geophysics 75(3):N65–N78. https://doi.org/10.1190/1.3374690
  • 35. Flügel E (1982) Microfacies analysis of limestone. Springer, Berlin
  • 36. Folk RL (1962) Spectral subdivision of limestone types. In: Ham WE (ed) Classification of carbonate rocks—a symposium, vol 1. AAPG Memoir, Tulsa, pp 62–84
  • 37. Freund D (1992) Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure. Geophys J Int 108:125–135
  • 38. Gardner GHF, Wyllie MRJ, Droschak DH (1965) Hysteresis in the velocity–pressure characteristics of rocks. Geophysics 30:111–134
  • 39. Gardner GHF, Gardner W, Gregory R (1974) Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics 39:770–780
  • 40. Gardosh M, Garfunkel Z, Druckman Y, Buchbinder B (2010) Tethyan rifting in the Levant region its role in Early Mesozoic crustal evolution. In: Homberg C, Bachmann M (eds) Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic, Special publications, vol 341. Geological Society of London, London, pp 9–36
  • 41. Garfunkel Z (1989) Tectonic setting of Phanerozoic magmatism in Israel. Isr J Earth Sci 38:51–74
  • 42. Garfunkel Z (1992) Darfur–Levant array of volcanics—a 140-Ma-long record of hot spot beneath the African–Arabian continent and its bearing on Africa’s absolute motion. Isr J Earth Sci 40:135–150
  • 43. Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011
  • 44. Ghalayini R, Daniel J-M, Homberg C, Nader FH, Comstock JE (2014) Impact of Cenozoic strike-slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon). Tectonics. https://doi.org/10.1002/2014TC003574
  • 45. Gomez F, Khawlie M, Tabet C, Darkal AN, Khair K, Barazangi M (2006) Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and Syria. Earth Planet Sci Lett 241:913–931
  • 46. Greenfield RJ, Graham EK (1996) Application of the simple relation for describing wave velocity as a function of pressure in rocks containing microcracks. J Geophys Res 101:5643–5652
  • 47. Han D-H, Batzle M (2004) Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics 69:398–405
  • 48. Han D-H, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51(11):2093–2107
  • 49. Hawie N, Gorini C, Deschamps R, Nader FH, Montadert L, Grajeon D, Baudin F (2013) Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Mar Pet Geol 48:392–410
  • 50. Hawie N, Deschamps R, Nader FH, Gorini C, Müller C, Desmares D, Hoteit A, Granjeon D, Montadert L, Baudin F (2014) Sedimentologic and stratigraphic evolution of northern Lebanon since the late Cretaceous: implications on the Levant margin and basin. Arab J Geosci 7:1323. https://doi.org/10.1007/s12517-013-0914-5
  • 51. Hyndman RD, Moore G, Moran FK, Hill IA, Taira A, Firth JV et al (1993) Velocity, porosity, and pore-fluid loss from the Nankai Subduction zone accretionary prism. Proc ODP Sci Results 131:211–220
  • 52. Jeng FS, Weng MC, Lin ML, Huang TH (2004) Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan. Eng Geol 73:71–91
  • 53. Ji S (2004) A generalized mixture rule for estimating the viscosity of solid–liquid suspensions and mechanical properties of polyphase rocks and composite materials. J Geophys Res. https://doi.org/10.1029/2004JB003124
  • 54. Ji SC, Wang ZC (1999) Elastic properties of forsterite–enstatite composites up to 3.0 GPa. J Geodyn 28:147–174
  • 55. Ji SC, Wang Q, Xia B (2002) Handbook of seismic properties of minerals, rocks and ores. Polytechnic International Press, Montreal
  • 56. Ji S, Wang Q, Xia B (2004) Mechanical properties of multiphase materials and rocks: a simple phenomenological approach using generalized means. J Struct Geol 26(8):1377–1390
  • 57. Ji S, Gu Q, Xia B (2006) Porosity dependence of mechanical properties of solid materials. J Mater Sci 41:1757–1768. https://doi.org/10.1007/s10853-006-2871-9
  • 58. Ji S, Wang Q, Marcotte D, Salisbury MH, Xu Z (2007) P wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. J Geophys Res 112:B09204. https://doi.org/10.1029/2006JB004867
  • 59. Ji S, Sun S, Wang Q, Marcotte D (2010) Lamé parameters of common rocks in the Earth’s crust and upper mantle. J Geophys Res 115:B06314. https://doi.org/10.1029/2009JB007134
  • 60. Ji S, Li L, Motra HB, Wuttke F, Sun S, Michibayashi K, Salisbury MH (2018) Poisson’s ratio and auxetic properties of natural rocks. J Geophys Res. https://doi.org/10.1002/2017JB014606
  • 61. Kahraman S, Yeken T (2008) Determination of physical properties of carbonate rocks from P-wave velocity. Bull Eng Geol Environ 67:277–281
  • 62. Kassab MA, Weller A (2011) Porosity estimation from compressional wave velocity: a study based on Egyptian sandstone formations. J Petrol Sci Eng 78:310–315
  • 63. Kassab MA, Weller A (2013) Porosity estimation from compressional wave velocity: a study based on Egyptian carbonate samples. J Earth Sci Eng 3:314–321
  • 64. Kassab MA, Weller A (2015) Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt. Egypt J Petrol 24:1–11. https://doi.org/10.1016/j.ejpe.2015.02.001
  • 65. Kassab MA, Abuseda HH, El Sayed NA, LaLa AM, Elnaggar OM (2016) Petrographical and petrophysical integrated studies, Jurassic rock samples, North Sinai, Egypt. Arab J Geosci 9:99. https://doi.org/10.1007/s12517-015-2146-3
  • 66. Kitamura K, Takahashi M, Masuda K, Ito H, Song S-R, Wang C-Y (2005) The relationship between pore-pressure and the elastic-wave velocities of TCDP-cores. Eos Trans, AGU, 86(52), Fall meeting supplement, Abstract T51A-1326, F1833
  • 67. Knackstedt MA, Arns CH, Pinczewski WV (2003) Velocity–porosity relationships, 1: accurate velocity model for clean consolidated sandstones. Geophysics 68(6):1822–1834. https://doi.org/10.1190/1.1635035
  • 68. Knackstedt MA, Arns CH, Pinczewski WV (2005) Velocity–porosity relationships: predictive velocity model for cemented sands composed of multiple mineral phases. Geophys Prospect 53:349–372
  • 69. Longiaru S (1987) Visual comparators for estimating the degree of sorting from plane and thin sections. J Sedimentol Petrol 57:792–794
  • 70. Marion D, Nur A, Yin H, Han D (1992) Compressional velocity and porosity in sand–clay mixtures. Geophysics 57:554–563
  • 71. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positioning system constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719
  • 72. McSkimin HJ, Andreatch P, Thurston RN (1965) Elastic moduli of quartz versus hydrostatic pressure at 25 °C and − 195.8 °C. J Appl Phys 36(5):1624–1632. https://doi.org/10.1063/1.1703099
  • 73. Mousa AS, El-Hariri TYMA, Abu Assy EMA (2011) Sedimentological and petrophysical characteristics of Raha Formation at Wadi Tubia, Northern Gulf of Aqaba, Sinai, Egypt. Egypt J Petrol 20:79–87. https://doi.org/10.1016/j.ejpe.2011.06.003
  • 74. Müller C, Higazi F, Hamdan W, Mroueh M (2010) Revised stratigraphy of the upper Cretaceous and Cenozic series of Lebanon based on nanofossils, Special publications, vol 341. Geological Society of London, London, pp 287–303
  • 75. Nabawy BS, Barakat MKh (2017) Formation evaluation using conventional and special core analyses: Belayim Formation as a case study, Gulf of Suez, Egypt. Arab J Geosci 10:25. https://doi.org/10.1007/s12517-016-2796-9
  • 76. Nabawy BS, David C (2016) X-ray CT scanning imaging for the Nubia sandstone as a tool for characterizing its capillary properties. Geosci J 20:691–704. https://doi.org/10.1007/s12303-015-0073-7
  • 77. Nabawy BS, Sediek KN, Nafee SA (2015) Pore fabric assignment using electrical conductivity of some Albian–Cenomanian sequences in north Eastern Desert, Egypt. Arab J Geosci 8:5601–5615. https://doi.org/10.1007/s12517-014-1631-4
  • 78. Nader FH (2014) The geology of Lebanon. Scientific Press, London, p 108
  • 79. Nanda N (2016) Seismic data interpretation and evaluation for hydrocarbon exploration and production. Springer, Berlin. https://doi.org/10.1007/978-3-319-26491-2. ISBN 978-3-319-26489-9
  • 80. Ngoc NH, Aziz SB, Duc NA (2014) The application of seismic attributes for reservoir characterization in pre-tertiary fractured basement, Vietnam–Malaysia offshore. Interpretation 2(1):SA57–SA66. https://doi.org/10.1190/INT-2013-0081.1
  • 81. Nur A, Mavko G, Dvorkin J, Gal D (1995) Critical porosity: the key to relating physical properties to porosity in rocks. 65th SEG meeting, Houston, USA, Expanded abstracts
  • 82. Ojha M, Sain K (2014) Velocity–porosity and velocity–density relationship for shallow sediments in the Kerala–Konkan Basin of western Indian margin. J Geol Soc India 84:187–191
  • 83. Onajite E (2014) Seismic data analysis techniques in hydrocarbon exploration. Elsevier, Amsterdam. https://doi.org/10.1016/C2013-0-09969-0
  • 84. Panakkal JP, Willems H, Arnold W (1990) Nondestructive evaluation of elastic parameters of sintered iron powder compacts. J Mater Sci 25(2):1397–1402
  • 85. Porter DF, Reed JS, Lewis D III (1977) Elastic moduli of refractory spinels. J Am Ceram Soc 60(7–8):345–349
  • 86. Rafavich F, Kendall CH, Todd TP (1984) The relationship between acoustic properties and the petrographic character of carbonate rocks. Geophysics 49:1622–1636
  • 87. Raymer LL, Hunt ER, Gardner JS (1980) An improved sonic transit time-to-porosity transform. Trans SPWL Annu Logging Symp 13:133–152
  • 88. Russell BH, Smith T (2007) The relationship between dry rock bulk modulus and porosity—an empirical study. CREWES Res Rep 19:1–14
  • 89. Salem HS (2000) Poisson’s ratio and the porosity of surface soils and shallow sediments, determined from seismic compressional and shear wave velocities. Géotechnique 50(4):461–463
  • 90. Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis, vol 77. AAPG Memoir, Tulsa
  • 91. Schön JH (1996) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Oxford
  • 92. Selley RC, Sonnenberg SA (2015) Elements of petroleum geology, 3rd edn. Academic Press, Elesevier
  • 93. Shakoor A, Bonelli RE (1991) Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Bull Assoc Eng Geol 28(1):55–71
  • 94. Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22. https://doi.org/10.1007/s10064-007-0109-y
  • 95. Singh TN, Kanchan R, Saigal K, Verma AK (2004) Prediction of P-wave velocity and anisotropic property of rock using artificial neural network technique. J Sci Ind Res 63(1):32–38
  • 96. Soga N, Schreiber E (1968) Porosity dependence of sound velocity and Poisson’s ratio for polycrystalline MgO determined by resonant sphere method. J Am Ceram Soc 51(8):465–467
  • 97. Sønneland L, Barkved O (1990) Use of seismic attributes in reservoir characterization. In: Buller AT, Berg E, Hjelmeland O, Kleppe J, Torsæter O, Aasen JO (eds) North Sea oil and gas reservoirs—II. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0791-1_8
  • 98. Stewart RR, Gaiser JE, Brown RJ, Lawton DC (2000) Converted-wave seismic exploration: applications. CREWES Res Report, vol 12
  • 99. Sun S, Ji S, Wang Q, Salisbury M, Kern H (2012) P-wave velocity differences between surface-derived and core samples from the Sulu ultrahigh-pressure terrane: implications for in situ velocities at great depths. Geology 40(7):651–654
  • 100. Tatar O, Piper JDA, Gürsoy H, Heimann A, Koçbulut F (2004) Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a palaeomagnetic study of the Karasu Rift Volcanism. Tectonophysics 385:17–43. https://doi.org/10.1016/j.tecto.2004.04.005
  • 101. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York
  • 102. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific, Oxford
  • 103. Ulusay R, Tureli K, Ider MH (1994) Prediction of engineering properties of selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng Geol 37:135–157
  • 104. Vernik L, Fisher D, Bahret S (2002) Estimation of net-to-gross from P and S impedance in deepwater turbidites. Lead Edge 21:380–387
  • 105. Walley CD (1983) A revision of the lower Cretaceous stratigraphy of Lebanon. Geol Rundsch 72(1):377–388
  • 106. Walley CD (1997) The lithostratigraphy of Lebanon: a review. Leban Sci Bull 10:1
  • 107. Walley CD (1998) Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics 298:37–62. https://doi.org/10.1016/S0040-1951(98)00177-2
  • 108. Wang Z (2000) Velocity–density relationships in sedimentary rocks. In: Wang Z, Nur A (eds) Seismic and acoustic velocities in reservoir rocks: recent developments, vol 3. Society of Exploration Geophysics, Tulsa, pp 258–268
  • 109. Wang Q, Ji S (2009) Poisson’s ratio of crystalline rocks as a function of hydrostatic confining pressure. J Geophys Res. https://doi.org/10.1029/2008JB006167
  • 110. Wang Z, Nur A (1992) Aspect of rock physics in seismic reservoir surveillance. In: Sheriff RE (ed) Reservoir geophysics. Society of Exploration Geophysicists, Tulsa, pp 285–300
  • 111. Wang J-H, Hung J-H, Dong J-J (2009) Seismic velocities, density, porosity, and permeability measured at a deep hole penetrating the Chelungpu fault in central Taiwan. J Asian Earth Sci 36:135–145. https://doi.org/10.1016/j.jseaes.2009.01.010
  • 112. Weger RJ, Eberli GP, Baechle GT, Massaferro JL, Sun YF (2009) Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bull 93(10):1–21
  • 113. Wepfer WW, Christensen NI (1991) A seismic velocity–confining pressure relation, with applications. Int J Rock Mech Min Sci Geomech Abstr 28:451–456
  • 114. Wilson JL (1975) Carbonate facies in geologic history. Springer, New York
  • 115. Wilson M (1992) Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of lower Cretaceous super-plume activity. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental breakup, Special publications, vol 68. Geological Society of London, London, pp 241–255
  • 116. Winkler KW, Murphy WF III (1995) Acoustic velocity and attenuation in porous rocks. Rock physics and phase relations: a handbook of physical constants. AGU, Washington, pp 20–34
  • 117. Wyllie MRJ, Gregory AR, Gardner LW (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70
  • 118. Wyllie MRJ, Gregory AR, Gardner GHF (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23:459–493
  • 119. Xu S, White RE (1995) A new velocity model for clay–sand mixtures. Geophys Prospect 43:91–118
  • 120. Yeheskel O, Shokhat M, Ratzker M, Dariel MP (2001) Elastic constants of porous silver compacts after acid assisted consolidation at room temperature. J Mater Sci 36(5):1219–1225
  • 121. Yu C, Ji S, Li Q (2016) Effects of porosity on seismic velocities, elastic moduli and Poisson’s ratios of solid materials and rocks. J Rock Mech Geotech Eng 8:35–49. https://doi.org/10.1016/j.jrmge.2015.07.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c8467c7-f54d-477e-8f66-15c9042822a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.