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Abstract: The paper is related to parameter dependent opti-
mal control problems for control-affine systems. The case of scalar
reference control with bang-singular-bang structure is considered.
The analysis starts from a variational inequality (VI) formulation
of Pontryagin’s Maximum Principle. In a first step, under appro-
priate higher-order sufficient optimality conditions, the existence of
solutions for the linearized problem (LVI) is proven. In a second
step, for a certain class of right-hand side perturbation, it is shown
that the controls from LVI have bang-singular-bang structure and,
in L1 topology, depend Lipschitz continuously on the data. Ap-
plying finally a common fixed-point approach to VI, the results are
brought together to obtain existence and structural stability results
for extremals of the original control problem under parameter per-
turbation.

Keywords: parametric optimal control problems, bang-singular
control structure, approximation of extremals

1. Introduction

The paper is concerned with optimal control problems in Mayer form when the
system is control-affine, and the data functions smoothly depend on a real pa-
rameter. Pontryagin’s Maximum Principle will be interpreted as a variational
inequality, and its stability under parameter perturbation is investigated. We
consider the particular case when the control function is subject to two-sided
bound constraints. It will be further assumed that, for the reference parameter
zero, the control has bang-singular-bang structure, i.e., it achieves its extremal
values on certain subintervals to the left and right ends of the time interval, and
takes “singular” values from the interior of the control set in the remaining part.
The investigation makes essential use of preliminary work on singular controls
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in Goh (1966a, b), Dmitruk (2008), Poggiolini and Stefani (2008, 2011), and of
contributions to Lipschitz stability in optimal control theory in Dontchev and
Malanowski (2000), Malanowski (1995, 2001), and of stability, respectively met-
ric regularity results for variational inequalities in Robinson (1980), Dontchev
(1995), Dontchev and Rockafellar (1996), see further Dontchev et al. (2005,
2006, 2009). Generically, in the above situation, the optimal control is dis-
continuous and will continuously depend on the parameter in Lp topology for
p < ∞ only; see Felgenhauer (2001). For the bang–bang case, Lipschitz sta-
bility results have been obtained in L1 sense in Felgenhauer (2003). Further
investigation of stability of bang–bang switching points from Felgenhauer et al.
(2009), Felgenhauer (2010, 2013) confirm the related estimates. In the case
of bang-singular-bang controls, stability results for the singular feedback con-
trol law are provided in Vossen (2005, 2010). Moreover, bang-singular junction
points perturbations have been analyzed by shooting type methods in Maurer
(1976), Oberle (1979), Vossen (2010) but without providing general theoretical
results. An alternative approach for stability investigation consists in applying
synthesis methods as, e.g., in Ledzewicz and Schättler (2007). In Felgenhauer
(2012), the structural stability for bang-singular junction in case of one singu-
lar arc of order one was obtained under rather mild assumptions including the
strong Legendre condition but without second-order sufficient optimality con-
ditions. Instead, it had to be supposed that the perturbed system of first-order
necessary conditions had a solution.

The recent development of second-order conditions for the problem class in
Aronna et al. (2012a) now has allowed for completing the analysis. In this pa-
per, the authors combine the theoretical foundations with the shooting method
and prove its well-posedness for a quite general problem setting including ter-
minal boundary constraints and vector-valued controls. As a particular result,
the local structural stability together with piecewise L∞ error estimates for
the control are obtained in a transformed problem formulation. However, the
second-order condition used is clearly stronger than the condition originally de-
rived in Aronna et al. (2012a) in that the critical cone does not include now
any restriction on the solution structure. The present paper also makes essential
use of the result from Aronna et al. (2012a) but is independent of Aronna et
al. (2012b). We will provide local Lipschitz continuity of extremals in L1 based
topology together with structural stability results for the original problem as
well as for its linearized version. The assumptions on the reference solution
herein include structural properties and second-order conditions in the spirit of
Aronna et al. (2012a). Compared to the coercivity condition from Aronna et
al. (2012a), the cone of variations of the control, respectively its primitive is
only slightly modified to meet stability needs. Moreover, from a methodolog-
ical point of view, the variational approach proposed in the present paper is
clearly independent from the shooting formulation and related transformations
as they have been utilized in Aronna et al. (2012b). For future research on
general approximation approaches, the structural stability results obtained for
the linearized variational inequalities may be of additional interest.
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The paper starts with characterizing the extremals by Pontryagin’s Maxi-
mum Principle which, for the problems under consideration, holds in normal
form, and is equivalent to the first-order necessary optimality conditions. The
conditions will be written in the form of a variational inequality (VI). Next,
its linearization (LVI) is obtained and analyzed. Two points are crucial in the
stability analysis: first, the weakness of coercivity and stability properties of the
linearized VI do not allow to directly apply standard results from (strong, or, re-
spectively metric) regularity theory as developed in Robinson (1980), Dontchev
(1995), Dontchev and Rockafellar (1996), Dontchev and Lewis (2005), Dontchev
et al. (2006) etc. (see also Dontchev and Veliov, 2009, for further references).
However, an a-posteriori structural investigation of control components in the
spirit of Felgenhauer (2012) shows that L1 control stability holds for LVI in case
that the included rhs terms are of appropriate regularity. Returning then to the
roots of the stability proof by S. M. Robinson (1980), it turns out that the per-
turbed extremals are fixed points of the solution map for LVI with right-hand
sides of the required type: this is the second important feature in proving L1

Lipschitz stability of bang-singular-bang controls under parameter perturbation.
Plan of the paper. In Section 2, the problem and variational inequalities are
formulated. The linearized VI will be analyzed in detail in Section 3 by means of
Goh’s transformation adapted to the state-adjoint system, and by suitable struc-
tural analysis techniques. The final L1 stability result is proven in Section 4. In
the concluding Section 5, an example is provided, and summarizing remarks are
given. Finally, the Appendix contains some auxiliary material and calculations.
Notations. Let Rn be the Euclidean vector space with norm | · |, and scalar
product written as a ·b = aT b. Superscript T is generally used for transposition
of matrices, respectively vectors. The Lebesgue space of order p of vector-valued
functions on [0, 1] is denoted by Lp(0, 1;R

k). W l
p(0, 1;R

k) is the related Sobolev
space, and norms are given as ‖ ·‖p and ‖ ·‖l,p, (1 ≤ p ≤ ∞, l ≥ 1), respectively.
For the scalar product in L2 write (·, ·). According to Riesz’ Theorem, the dual
space to L2 can be identified with L2, i.e. (L2)

∗=̇L2. In places, where the du-
ality pairing between a Banach space V and its dual V ∗ is needed, we use 〈·, ·〉.
Let A be a continuous, linear mapping from the Banach space V1 to the Banach
space V2. Then A∗ : V ∗

2 → V ∗
1 denotes the adjoint operator (or: transpose) to

A satisfying 〈A∗v, w〉 = 〈v,Aw〉 for all v ∈ V ∗
2 , w ∈ V1. The symbols ∇x, ∇2

x

denote (partial) gradients or Jacobians, and Hessians respectively. For functions
f, g : R

k → R
k, Lie brackets are given by [f, g] = ∇xg f − ∇xf g. Finally, we

add some abbreviations for particular variable spaces, the control set, and sets
of right-hand side perturbations:

X = W 1
1 ×W 1

1 × L1 × L∞, Y = L1 × R
n × L1 × R

n × L∞ × L1 × L1,

U = {w ∈ L∞ : 0 ≤ w(t) ≤ 1 a.e. on [0, 1]} ⊂ L1,

D = L1 × R
n × L1 × R

n × L∞, D̂ = L2 × R
n × L2 × R

n ×W 1
2 .
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2. The problem and the VI solution characterization

2.1. The problem and the structural assumption

Consider the following parameter dependent optimal control problem with scalar-
valued, bounded optimal control entering the state system linearly:

(CPp) minimize Jp(x, u) := k(x(1), p) (1)

subject to

ẋ(t) = f(x(t), p) + g(x(t), p)u(t) a.e. in [0, 1], (2)

x(0) = a(p), (3)

0 ≤ u(t) ≤ 1, a.e. in [0, 1] , (4)

x ∈ W 1
∞(0, 1;Rn), u ∈ L∞(0, 1;R). (5)

For simplicity, assume that p is a real parameter lying in a neighborhood Π
of p0 = 0. Further, suppose that (x0, u0) is a reference solution of (CP0).
Concerning smoothness of input data, the following will be required:

(H0) There exists an open set Z ⊂ R
n such that x0(t) ∈ Z for almost all

t ∈ [0, 1], and the functions k, f, g and a are smooth on Z ×Π, respec-
tively Π. In particular, they are three times continuously differentiable
w.r.t. x, and the related partial derivatives up to order three depend
Lipschitz continuously on all their arguments.

Remark 1 The constraints for u can be replaced by more general bounds u ≤
u(t) ≤ ū with given u < ū. Defining the new control u′(t) := (u(t)−u)/(ū−u),
and transforming f and g accordingly, make it possible to apply the following
results nearly unchanged to arbitrary two-sided control bounds.

Define the Lagrange functional L : W 1
2 ×L2 ×L2 ×L2 ×Π → R with vector-

valued adjoint function λ : [0, 1] → R
n and multiplier µ : [0, 1] → R

2, µ1, µ2 ≥ 0,
by

L(x, u, λ, µ, p) = k(x(1), p)− (λ, ẋ − f(x, p)− g(x, p)u)

−(µ1, u) + (µ2, u− 1),

and the pre-Hamilton function (or: control Hamiltonian)H : Rn×R×R
n×Π → R

by

H(x, u, λ, p) = λT f(x, p) + λT g(x, p)u.

Then, for the given normal case, Pontryagin’s Maximum Principle can be ex-
pressed in the form of a variational inequality
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(VIp) ẋ− f(x, p)− g(x, p)u = 0, x(0)− a(p) = 0, (6)

λ̇+∇xH(x, u, λ, p) = 0, λ(1)−∇xk(x(1), p) = 0, (7)

λT g(x, p) − µ1 + µ2 = 0, (8)

− u ∈ N+(µ1), u− 1 ∈ N+(µ2) (9)

for almost every t ∈ [0, 1]. The set N+ stands for the normal cone to R+,

N+(µ̄) =

{

{ρ ∈ R− : ρT (µ− µ̄) ≤ 0 ∀µ ∈ R+} if µ̄ ∈ R+,
Ø if µ̄ 6∈ R+.

Notice that, for problem (CP0), the adjoint and multiplier functions λ0, µ0
1, µ

0
2

associated to (x0, u0) are uniquely determined by (VI0) and belong to W 1
∞.

Conditions (8), (9) can be equivalently written in terms of the switching
function σ(·) = λ(·)T g(x(·), p) and its positive, respectively negative parts [σ]±:
for µ1 = [σ]+, µ2 = [σ]−, the relations read as

σ = [σ]+ − [σ]−, 0 ≤ u ≤ 1, u [σ]+ = 0, (u− 1) [σ]− = 0 a.e. in [0, 1].

It should be noticed that, under the given smoothness assumptions, for (x0, u0) ∈
W 1

∞ × L∞ we have σ0 = (λ0)T g0(x0) ∈ C1, and σ̇0 = (λ0)T [f0, g0] belongs to
W 1

∞. Moreover,

σ̈0 = P −u0R, P = (λ0)T
[

f0, [f0, g0]
]

, R = −(λ0)T
[

g0, [f0, g0]
]

. (10)

(Here and in the following, [·, ·] stands for the Lie brackets).
Finally, the investigation will be restricted to bang-singular-bang controls

u0 satisfying

(H1) (strict structural assumption)
The function u0 is of strict bang-singular-bang structure, i.e., there
exist points t1, t2 with 0 < t1 < t2 < 1 and a positive constant m such
that u0 ≡ 0 a.e. on [0, t1), u0 ≡ ū ∈ {0, 1} on (t2, 1], and
m < u0(t) < 1 −m a.e. on (t1, t2). Moreover, σ0 6= 0 on [0, t1) ∪ (t2, 1].

Given β > 0, define

J+
β := { t ∈ [0, 1] : σ0(t) > β }, J−

β := { t ∈ [0, 1] : σ0(t) < −β } (11)

and Jβ = J+
β ∪ J−

β . Condition (H1), in particular, ensures that, for sufficiently
small β, the set [0, 1]\Jβ is a closed interval Iβ such that [t1, t2] ⊂ Iβ ⊂ (0, 1).

2.2. Variational inequality and its linearization

We start this section by reformulating (VIp):
Let p ∈ Π and ξ = (x, λ, u, µ) ∈ X = W 1

1 ×W 1
1 ×L1 ×L∞ be the inputs in

the left-hand sides of the system abbreviated by (−ψ(p, ξ)), and
U = {w ∈ L∞ : 0 ≤ w(t) ≤ 1 a.e. on [0, 1]} ⊂ L1.



562 U. Felgenhauer

As before, µ stands for a vector valued function with components µ1, µ2 :
[0, 1] → R.
Obviously, ψ(p, ξ) ∈ Y = L1 × R

n × L1 × R
n × L∞ × L1 × L1. Further define

K = {ν ∈ L∞ : ν(t) ≥ 0 for a.e. t ∈ [0, 1]},

NK(ν) =

{

{φ ∈ L∗
∞ : 〈φ, ν′ − ν〉 ≤ 0 ∀ ν′ ∈ K} if ν ∈ K

Ø otherwise,

and the set-valued map F : X → 2Y ,

F(ξ) = {0} × · · · × {0} × (NK(µ1) ∩ L1)× (NK(µ2) ∩ L1) .

Then (VIp) can be written in abstract setting as

0 ∈ ψ(p, ξ) + F(ξ). (12)

For p = 0, ξ0 = (x0, λ0, u0, µ0) ∈ X is a solution.
Notice that F has closed graph. The function ψ is Fréchet differentiable

w.r.t. ξ and, together with its derivative ψ′, continuous around (0, ξ0). Further,
ψ is Lipschitz continuous w.r.t. p uniformly in ξ close to ξ0.
The linearization of (VIp) at p = 0 w.r.t. ξ near ξ0 can be written as

(LVIδ) δ̄ ∈ T (ξ) + F(ξ)

where we allow for some right-hand side perturbation δ̄. The operator T = T (ξ)
herein denotes

T (ξ) = ψ(p0, ξ0) + ψ′(p0, ξ0)(ξ − ξ0)

= −





















ż −Az −Bw + Bu0

z(0)
q̇ +AT q +Q11z +Q12w − Q12u

0

q(1)−K z(1)
BT q +Q21z − ν1 + ν2 + µ0

1 − µ0
2

−w
w − 1





















,

A = ∇x(f
0 + g0u0), B = ∇u(f

0 + g0u0) = g0, K = ∇2
xk

0,

Q = ∇2
(x,u)H

0, Q11 = ∇2
xxH

0, Q12 = ∇2
xuH

0,

(13)

and (ξ − ξ0) = (z, q, w− u0, ν − µ0). Here and in the following, the superscript
“0” says that the functions are evaluated at p = 0 along ξ0.
Due to the linearity of the last two components of ψ, it is possible to restrict
(LVIδ) to δ̄ ∈ Y of the form δ̄ = (δ1, . . . , δ5, 0, 0), or shorter, δ̄ = (δ, 0). By Λ
denote the solution operator for (LVIδ), i.e.,

Λ(δ) = {ξ ∈ X : δ̄ ∈ T (ξ) + F(ξ), δ̄ = (δ, 0)}. (14)
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Existence and stability results for variational inequalities of type (12) have
been widely considered; we only mention here the seminal paper of S. M. Robin-
son (1980) on strongly regular generalized equations, and generalizations given
by A. Dontchev and T. Rockafellar (1996). Further, we refer to Dontchev and
Lewis (2005), Dontchev et al. (2006), Dontchev and Veliov (2009) for applica-
tions of metric regularity results. The investigations utilize the close relation
between Lipschitz stability properties of solutions to (VIp) w.r.t. the param-
eter p, and the Lipschitz continuity of Λ w.r.t. rhs perturbations δ (see, e.g.,
Dontchev, 1995, Dontchev and Malanowski, 2000).

For the given problem, let us start with the fixed point approach from Robin-
son (1980): Define γ̄(p, ξ) := T (ξ) − ψ(p, ξ). Then the element ξ ∈ X solves
(VIp) if and only if it is a solution of (LVIδ) corresponding to δ̄ = (δ, 0) = γ̄(p, ξ).
(Notice that the last two components in γ̄ vanish due to the linearity of the re-
lated components of ψ.) The formulation can be further reduced to a fixed
point problem in terms of the control component. To this aim, let p ∈ Π
and u ∈ U be arbitrarily given: if |p| ≤ ǫ0, ‖u − u0‖1 ≤ ǫ1 and ǫ0, ǫ1 are
sufficiently small, one can find x = x(·, u, p), λ = λ(·, u, p) from (6), (7) and
σ = σ(·, u, p) = λ(·, u, p)T g(x(·, u, p), p). Obviously, x, λ ∈ W 1

∞ and σ ∈ W 2
∞.

Setting µ1 = µ1(·, u, p) = [σ(·, u, p)]+ , µ2 = [σ]−, we further have µ1, µ2 ∈W 1
∞.

For the resulting (x, λ, u, µ) = ξ(u, p), the term γ̄ = γ̄(p, ξ) has the following
components:

γ̄1 = ẋ0 − ẋ+A(x − x0) +B(u − u0), γ̄2 = x0(0)− x(0),

γ̄3 = λ̇0 − λ̇−AT (λ− λ0)−Q11(x− x0)−Q12(u− u0),
γ̄4 = λ0(1)− λ(1) +K (x(1)− x0(1)),

γ̄5 = σ − σ0 −BT (λ− λ0)−Q21(x − x0), γ̄6 = γ̄7 = 0.

(15)

With γ̄′ = (γ̄1, . . . , γ̄5) define

γ(p, u) := γ̄′(p, ξ(u, p)), γ̄(p, ξ) = T (ξ)− ψ(p, ξ). (16)

If we define by Λu(δ) ⊂ L1 the set of u-components of ξ ∈ Λ(δ) and further, set

Φp(u) := Λu(γ(p, u)), (17)

then the following fixed point characterization is obtained:

Lemma 2.1 The element ξ = ξ(u, p) ∈ X solves (VIp) if and only if
u ∈ Φp(u).

For the further analysis of (LVIδ) it will be useful to reduce the formulation
to the control component v := w − u0 and multiplier ν = (ν1, ν2) as main
unknown variables. Following the approach from Dontchev and Malanowski
(2000), the solution (z, q) of the linearized state-adjoint system from (LVIδ),
(13), i.e.

ż −Az −Bv = −δ1, z(0) = −δ2,
q̇ +AT q +Q11z +Q12v = −δ3, q(1) = K z(1)− δ4,

(18)
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can be represented as

z(t) = (Sv)(t) + zpartδ (t), q(t) = (S̃v)(t) + qpartδ (t) (19)

where S, S̃ do not depend on δ (see Appendix 6.1). In analogy to Dontchev and
Malanowski (2000), we can substitute the formulas into (13) and find a reduced
version of (LVIδ) in terms of the unknown control u. In particular, using (69) –
(70) from Appendix 6.1 we get

BT q + Q21z + δ5 = C v + r(δ) (20)

with

r(δ) := BT qpartδ + Q21z
part
δ + δ5 (21)

and further, by abbreviating Ŝv = (Sv)(1),

C v := Ŝ∗K Ŝv + (S∗Q11S + S∗Q12 +Q21S) v. (22)

If we denote

D = L1×R
n×L1×R

n×L∞, D̂ = L2×R
n×L2×R

n×W 1
2 , (23)

then r is linear and continuous as a mapping from D to L∞, or from D̂ to W 1
2 .

The mapping C is a linear self-adjoint operator on L2 with Cv ∈ W 1
2 ⊂ L∞ for

all v ∈ L2. Summing up, the inclusion (LVIδ) transforms into

(LVIredδ ) C v − ν1 + ν2 + σ0 + r(δ) = 0,

−v − u0 ∈ N+(ν1), v + u0 − 1 ∈ N+(ν2)

for almost every t ∈ [0, 1].

Lemma 2.2 For given δ, let (z, q, v, ν) ∈ L∞ × L∞ × L2 × L∞ be a solution of
(LVIδ) with ν = (ν1, ν2) satisfying ‖ν1 − µ0

1‖∞ + ‖ν2 − µ0
2‖∞ < β/2. Then v

solves the variational inequality:

(LVI’) find v ∈ Wβ :
(

C v + σ0 + r(δ), v′ − v
)

≥ 0 ∀ v′ ∈ Wβ

on Wβ = {v′ ∈ L2(0, 1;R) : v
′ = 0 a.e. on Jβ , 0 ≤ v′ + u0 ≤ 1 a.e. on [0, 1]}.

Proof. Denote w = v+ u0, w′ = v′ + u0. ¿From w ∈ −N+(ν1), w− 1 ∈ N+(ν2)
and v′ ∈Wβ deduce

(

C v + σ0 + r(δ), v′ − v
)

= ( ν1, w
′ − w) − ( ν2, (w

′ − 1)− (w − 1))

= ( ν1, w
′) + ( ν2, 1− w′) ≥ 0.

Notice that a.e. on Jβ we have µ0
1 + µ0

2 = |σ0| > β > 0. By the assumption
of the Lemma, ν1(t) ≥ β/2 > 0 follows on J+

β , and ν2(t) ≥ β/2 > 0 on J−
β ,

respectively: thus, v(t) = 0 on Jβ , or v ∈Wβ by complementarity.
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3. The linearized VI problem

3.1. Goh transformation. Monotonicity

The investigation of (LVIδ) will start with a variable substitution which for the
linearized state equation is well-known as Goh transformation. It will be also
adapted to the linearized adjoint equation as follows:

Define the function y : [0, 1] → R by

y(t) =

∫ t

0

v(s) ds. (24)

The integral is well-defined for all v ∈ L1. Moreover, y(0) = 0, and we will
denote y(1) =: h. Now introduce ζ := z − B y, η := q + Q12y. In terms of
these functions, the first equations in (LVIδ) can be reformulated as follows:

ζ̇ −Aζ −B1y = −δ1, ζ(0) = −δ2,
η̇ +AT η +Q11ζ +MT y = −δ3, η(1) = K ζ(1) + W h − δ4,

(25)

where the matrices are given by

B1 = AB − Ḃ, M = BTQ11 −Q21A− Q̇21, W = Q12(1) +KB(1).

Remark 1 The notations follow mainly Aronna et al. (2012a) where similar
calculations occur in transforming the second variation of the Lagrangian. Al-
ternatively, the matrices can be expressed via Lie brackets as

B1 = −
[

f0, g0
]

, M = −(λ0)T∇x

[

f0, g0
]

.

Notice further that

BT η + Q21ζ = BT q + Q21z + (BTQ12 − Q21B)y.

In the given case of scalar controls, the last term vanishes so that almost
everywhere on [0, 1] from (LVIδ) we obtain

BT η + Q21ζ − ν1 + ν2 + +µ0
1 − µ0

2 + δ5 = 0,

−v − u0 ∈ N+(ν1), v + u0 − 1 ∈ N+(ν2).
(26)

In analogy to (19), one can use solution operators S1 and S̃1 for (25) to eliminate
ζ and η from the first equation in (26). We obtain

ζ = S1y + ζpartδ , η = S̃1y + W̃h + ηpartδ ,

together with related boundary conditions,

ζ(0) = ζpartδ (0), η(1) = KŜ1y + Wh + ηpartδ (1), Ŝ1y := (S1y) (1),

cf. (25). Notice that ζpartδ = zpartδ , ηpartδ = qpartδ coincide with the δ-dependent
terms from (19). For details see the Appendix.
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Inserting the above expressions into the first part of (26) yields

C v = BT (S̃1y + W̃h) + Q21S1y =: Ĉ y (27)

a.e. on [0, 1]. As far as C, as an operator on L2, is self-adjoint, we have

(C v, ṽ ) =
(

Ĉ y, ˙̃y
)

=
(

ẏ, Ĉ ỹ
)

(28)

for all y, ỹ ∈ W 1
2 satisfying y(t) =

∫ t

0
v(s)ds, ỹ(t) =

∫ t

0
ṽ(s)ds and y(1) = h,

ỹ(1) = h̃, respectively.
Next we apply to (28) an integration by parts as known from the transfor-

mation of the second variation of J = J0(x, u) in Goh (1966b), Dmitruk (2008),
Aronna et al. (2012a), or Poggiolini and Stefani (2008). It will be shown that
the result yields a new symmetric formulation for C such that (C v, v ) is equiv-
alent to the quadratic form ΩP in Aronna et al. (2012a).
Let v belong to L2. Then, by (27) we have Ĉ y ∈ W 1

2 and further,

(C v, ṽ ) =
(

Ĉ y, ˙̃y
)

= Ĉ y · ỹ
∣

∣

∣

t=1
−

(

d

dt
(Ĉ y), ỹ

)

. (29)

In terms of ζ0 = S1y, η0 = S̃1y + W̃h one can write

d

dt
Ĉ y =

d

dt

(

BT η0 + Q21ζ0
)

= BT (−AT η0 −Q11ζ0 −MT y) + ḂT η0

+Q21(Aζ0 +B1y) + Q̇21ζ0

= −BT
1 η0 − Mζ0 − Ry,

where R = BTMT −Q21B1 can be equally expressed as

R = BTQ11B−BT
1 Q12−Q21B1−

d

dt
(BTQ12) = −(λ0)T

[

g0, [f0, g0]
]

, (30)

see (10). Further, by direct calculation we find

(

Ĉ y, ˙̃y
)

= c1(y, ỹ) +
(

CGy, ỹ
)

(31)

where c1 and CG are the related boundary and the integral forms, i.e,

c1(y, ỹ) = (Ŝ1ỹ +B(1)h̃)TK (Ŝ1y +B(1)h) + h
(

B(1)TQ12(1)
)

h̃

+ h̃Q21(1)(Ŝ1y) + (Ŝ1ỹ)
TQ12(1)h, (32)

(

CGy, ỹ
)

=
(

(S∗
1Q11S1 + S∗

1M
T + M S1 + R)y, ỹ

)

.

Both quadratic forms are symmetric, and we define

Ω(y, h) := c1(y, y) + (CGy, y) = (C v, v ) .
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The following coercivity type condition was derived in Aronna et al. (2012a)
and proven to be a sufficient condition for a strict Pontryagin minimum in
(CP0), see Theorem 5.5 therein. It will be used in the given context to obtain
the monotonicity property of C as an operator from L2 to (L2)

∗ =̇L2. The
formulation slightly differs from Aronna et al. (2012a) in that the subspace
of feasible v is taken L2 so that (y, h) belongs to W 1

2 × R instead of L2 × R,
and further, it is given a stable formulation depending on certain threshold
parameter β:

(H2) (strong second-order optimality condition)
There exist constants β > 0, m > 0 such that

Ω(y, h) = (C v, v ) ≥ m
(

‖y‖22 + |h|2
)

(33)

for all (v, y, h) ∈ L2 ×W 1
2 × R satisfying

y(t) =

∫ t

0

v(s) ds, y(1) = h, v(t) = 0 a.e. on Jβ .

The condition says, in particular, that C as a linear symmetric operator on
Wβ ⊂ L2 is strictly monotone (see Lemma 2.2 for notation).

Under the structural assumption (H1), one can replace (33) by the weaker
condition

Ω(y, h) ≥ m′ ‖y‖22 (34)

for some constant m′ > 0. Indeed, the triple (v, y, h) is restricted in a way
guaranteeing y(t) ≡ h on Jβ ∩ (t2, 1). Taking β sufficiently small, the latter
interval has a length l ≥ l̄ = (1 − t2)/2 > 0 so that ‖y‖22 ≥ l̄ h2 with l̄
independent of (v, y, h). In this sense, for appropriately chosen constants, (33)
and (34) are equivalent.

As it was pointed out in Aronna et al. (2012a), Dmitruk (2008), the inclusion

{(y, h) ∈ W 1
2 × R : y(1) = h} ⊂ L2 × R

is dense. Since Ω is continuous on L2 × R, (H2) further yields (33) to hold for
all (y, h) ∈ L2 × R such that y ≡ 0 on Jβ ∩ (0, t1), y ≡ h on Jβ ∩ (t2, 1). This
property can be used to show that

R(t) ≥ m > 0 for all t ∈ Iβ . (35)

The proof follows an idea from Dontchev and Malanowski (2000): for τ being
an interior point of Iβ and ǫ a small positive number, set

yǫ(t) =

{

1 if τ ≤ t ≤ τ + ǫ,
0 otherwise.
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From (32) we obtain

Ω(yǫ, 0) =

∫ τ+ǫ

τ

R(s) ds + o(ǫ).

Combining this estimate with Ω(yǫ, 0) ≥ m‖yǫ‖22 = mǫ and dividing by ǫ, the
assertion follows for ǫց 0.

Remark 2 The condition R = −(λ0)T
[

g0,
[

f0, g0
]]

≥ m > 0 is known as
the (strict) higher-order Legendre condition, see, e.g. Krener (1977), Dmitruk
(1977), Knobloch (1981), Poggiolini and Stefani (2005, 2008), Stefani (2008).
In particular, it ensures that u0 has a singular arc of order one on [t1, t2] (see
Krener, 1977, Knobloch, 1981, or Zelikin and Borisov, 1994) such that u0 =
us(x

0, λ0) = P /R on (t1, t2).

As a direct consequence of the monotonicity condition (H2) for C, we obtain

Lemma 3.1 Under Assumptions (H1) and (H2), for arbitrary δ ∈ D from (23)
the variational inequality (LVI’) has a unique solution vδ ∈ L2(0, 1;R).

Proof. As it was mentioned above, the mapping C : L2 → L2 is a linear self-
adjoint operator. It is continuous due to (22). By (H2), C is strictly monotone
on Wβ . By its construction, the set Wβ ⊂ L2 is nonempty, bounded, closed
and convex. From the existence theory for variational inequalities in separable,
reflexive Banach spaces from Kinderlehrer and Stampacchia (1980) (see The-
orem 1.7, ch. III therein) it follows that, for arbitrary r(δ) ∈ L∞ ⊂ L2, the
variational inequality (LVI’) has a unique solution v = vδ ∈ Wβ .

Remark 3 Due to the monotonicity and symmetry properties of C (respectively
c1, C

G) and the convexity of Wβ, the solution vδ of (LVI’) solves the problem

min
1

2
(C v, v ) +

(

σ0 + r(δ), v
)

s.t. v ∈ Wβ ⊂ L2(0, 1;R). (36)

3.2. Existence result for (LVIδ)

In this section, existence and local stability of solutions for the linearized vari-
ational inequalities (LVIδ), respectively (LVIredδ ) will be proved.

Theorem 1 Let Assumptions (H1) and (H2) hold for p = 0. Then, there
exists a neighborhood WD ⊂ D̂ of δ0 = 0 such that, for arbitrary δ ∈ WD,
the variational inequality (LVIδ) has an unique solution ξδ = (zδ, qδ, vδ, νδ) ∈
W 1

∞×W 1
∞×L∞×(L+

∞)2. Moreover, the components (zδ, qδ, νδ) depend Lipschitz
continuously on δ ∈ WD ⊂ D̂ in the following sense:

‖zδ − zδ
′‖2 + ‖qδ − qδ

′‖2 + ‖νδ − νδ
′‖∞ = O(‖δ − δ′‖D̂),

|πzδ − πzδ
′ | + |πqδ − πqδ

′ | = O(‖δ − δ′‖D̂)

where π : W 1
∞→R2n denotes the boundary trace operator: πφ =(φ(0), φ(1)).
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As a first auxiliary result, consider the solution stability for (LVI’):

Lemma 3.2 If the perturbations δ in (LVI’) are restricted to D̂ ⊂ D from (23)
then the solutions v = vδ, respectively y = yδ satisfy

‖yδ − yδ
′‖2 + |hδ − hδ

′ | = O(‖δ − δ′‖D̂) ∀ δ, δ′ ∈ D̂. (37)

An analogous estimate holds for vδ, vδ
′

taken as elements of H−1.

Proof. Let v, v′ be the solutions of (LVI’) related to r(δ), respectively r(δ′), and
define y, y′ by

y(t) =

∫ t

0

v(s) ds, y′(t) =

∫ t

0

v′(s) ds.

Then,
(

Ĉ(y − y′), v − v′
)

≤ (r(δ′)− r(δ), v − v′)

= (r(δ′)− r(δ))|t=1· (h− h′)− (ṙ(δ′)− ṙ(δ), y − y′)

≤ cr‖r(δ)− r(δ′)‖1,2 (|h− h′| + ‖y − y′‖2) .
Notice that, due to (21), ‖r(δ)− r(δ′)‖1,2 ≤ c‖δ− δ′‖D̂ for some constant c > 0.
On the other hand, (H2) yields

(

Ĉ(y − y′), v − v′
)

≥ m
(

‖y − y′‖22 + |h− h′|2
)

so that

‖y − y′‖2 + |h− h′| ≤ 2cr
m

‖r(δ) − r(δ′)‖1,2 = O(‖δ − δ′‖D̂), (38)

and hence the Lemma.

The next lemma shows how (LVI’) can be used to solve (LVIredδ ):

Lemma 3.3 For p = 0, let the assumptions (H1) and (H2) be fulfilled. If δ =
(δ1, δ2, δ3, δ4, δ5) is sufficiently close to δ0 = 0 in D̂ = L2×R

n×L2×R
n×W 1

2 ,
then there exists a unique multiplier pair νδ = (νδ1 , ν

δ
2) ∈ L∞(0, 1;R2

+) such that
(vδ, νδ) (with vδ chosen as in Lemma 3.1) solves (LVIredδ ). In addition, the
following estimate holds:

‖νδ − νδ
′‖∞ = O(‖δ − δ′‖D̂).

Proof. By Lemma 3.1, the function vδ solves (36) on Wβ , or equivalently, on

W ′
β = {v ∈ L2 : v = 0 on Jβ, 0 ≤ v + u0 ≤ 1 on Iβ}.

Due to the linear independence of active constraints in this problem, one can
find unique multiplier functions

ν′ ∈ L2(Jβ ,R), ν′′1 , ν
′′
2 ∈ L2(Iβ ,R+)
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such that the following first-order optimality condition is fulfilled for v = vδ:

C vδ + σ0 + r(δ) − ν′χ(Jβ) − (ν′′1 − ν′′2 )χ(Iβ) = 0 ∈ L2.

(The notation χ = χ(G) is used for the indicator function of a set G.)
Setting

νδ1 := ν′χ(J+
β ) + ν′′1χ(Iβ), νδ2 := −ν′χ(J−

β ) + ν′′2χ(Iβ),

we obtain

νδ1 − νδ2 = Ĉ yδ + σ0 + r(δ)

= Ĉ y0 + σ0 + O(‖δ − δ0‖D̂)

= µ0
1 − µ0

2 + O(‖δ − δ0‖D̂),

i.e. (νδ1 − νδ2) is close to (µ0
1 − µ0

2) in L∞ sense. In particular, for small per-
turbations (δ − δ0), on J+

β the multiplier νδ1 = ν′ ≈ µ0
1 is strictly positive (and

νδ2 > 0 on J−
β ) so that νδ ≥ 0 on the whole interval [0, 1]. Thus, the triple

(vδ, νδ1 , ν
δ
2) ∈ L2 × L∞ × L∞ solves (LVIredδ ).

In order to verify the estimate for (νδ − νδ
′

) notice that, by νδ1(t) · νδ2(t) = 0 a.e.
on [0, 1] and the non-negativity of both νδ1 and νδ2 , we have

νδ1 = [Ĉ yδ + σ0 + r(δ)]+, νδ2 = [Ĉ yδ + σ0 + r(δ)]−.

Using the relation |[a]± − [b]±| ≤ |a− b| for a, b ∈ R, we see that
∣

∣

∣νδ1,2 − νδ
′

1,2

∣

∣

∣ ≤
∣

∣

∣Ĉ(yδ − yδ
′

) + r(δ)− r(δ′)
∣

∣

∣

a.e. on [0, 1]. By (27), Ĉ as a mapping from (y, h) ∈ L2 × R to Ĉy ∈ L∞ is
Lipschitz continuous. The same is true for r = r(δ) ∈ L∞ and δ ∈ D̂; see (21).
Combined with the estimate (37) from Lemma 3.2, these facts yield the desired
Lipschitz continuity of νδ ∈ L∞ w.r.t. δ ∈ D̂.

After these preliminaries we come to the proof of Theorem 1:

Proof. Given δ ∈ WD ⊂ D̂ ⊂ D, find the solution v = vδ ∈ Wβ of (LVI’)
(respectively (36)). Due to the definition ofWβ , the solution is bounded so that
vδ ∈ L∞. According to Lemma 3.3, one can construct associated multipliers
νδ1 , ν

δ
2 ∈ L+

∞. Further, find yδ ∈ W 1
∞ ⊂ L∞ by integrating vδ as in (24) and

ζδ, ηδ ∈ W 1
2 ⊂ L∞ from solving the system (25). Then, one can determine

zδ = ζδ + Byδ, qδ = ηδ −Q12y
δ (39)

as functions in W 1
2 , and the resulting vector ξδ solves (LVIδ).

Assume for the moment that there exists ξ̂δ 6= ξδ solving (LVIδ).

|Cv̂δ + r(δ)| ≤ |BT η̂δ +Q21ζ̂
δ| + |δ5| ≤ ‖B‖∞‖η̂‖∞ + ‖Q21‖∞‖ζ̂‖∞ + ‖δ‖D.
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But ζ̂, η̂ solve (25) so that, by Lemma 3.2,

‖ζ̂‖∞ + ‖η̂‖∞ ≤ c(‖ŷ‖2 + ‖δ‖D) ≤ ĉ ‖δ‖D̂.

By shrinking WD, if necessary, the latter will become small enough to ensure
|Cv̂δ + r(δ)| < β/2, so that (ν̂1 − ν̂2) is close to (µ0

1 − µ0
2) in L∞ sense. In

particular, ν̂1 ≥ µ1 − β/2 > 0 on J+
β , and ν̂2 < 0 on J−

β : thus, v̂δ ∈ Wβ is a

solution of (LVI’). By Lemma 3.1, it coincides with vδ. Since the components
(zδ, qδ, νδ) are uniquely determined from vδ by the linearized canonical system,

respectively Lemma 3.3, we get ξ̂δ = ξδ.
Finally, let us check the Lipschitz properties of the solution ξ = ξδ:

Lemma 3.2 says that y = yδ as a function of L2 as well as h = hδ depend
Lipschitz continuously on δ ∈ D̂. Thus, the same is true for ζδ, ηδ ∈ W 1

2 ⊂ L∞

by (25) and further, for zδ, qδ ∈ L2 by construction (39). The estimate for the
boundary values follows from

zδ(0) = ζδ(0), qδ(0) = ηδ(0),
zδ(1) = ζδ(1) +B(1)hδ, qδ(1) = ηδ(1)−Q12(1)h

δ.

Using (26), we further obtain

φ(δ) := νδ1 − νδ2 = BT ηδ +Q21ζ
δ + σ0 + δ5,

i.e., this expression as a function inW 1
2 ⊂ L∞ is Lipschitz continuous w.r.t. δ ∈

D̂. Since νδ1 = [φ(δ)]+, ν
δ
2 = [φ(δ)]− as a consequence of the complementarity

relations from (26), we end up with the desired estimates for ν1, ν2 ∈ L∞.

3.3. Solution structure

In Theorem 1 and Lemma 3.2, Lipschitz continuity properties for solutions of
(LVIδ) are obtained. They include the continuity of z, q, y ∈ L2 w.r.t. δ but
do not cover corresponding estimates for the control v as an element of L1; e.g.
the control stability analysis requires further structural investigation answering,
in particular, the question of a possible preservation of the bang-singular-bang
behavior for w := v + u0. For certain local solutions of (VIp), a related first
stability theorem was derived in Felgenhauer (2012).

Suppose the conditions (H1) and (H2) hold for the extremal (x0, u0, λ0) of
(CP0). Taking the data from (LVIredδ ), set

σ̃ := C v + σ0 + r(δ).

Then the reduced variational inequality is equivalent to

0 ≤ w = v + u0 ≤ 1, [σ̃]+w = 0, [σ̃]−(w − 1) = 0, (40)

i.e., σ̃ represents a switching function for w = v + u0. By construction (20),

σ̃ = σ0 + BT q + Q21z + δ5 = σ0 + BT η + Q21ζ + δ5 (41)
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where (ζ, η) solves the linear system (25). Using Lemma 3.2 we obtain

‖σ̃ − σ0‖∞ = O(‖δ‖D̂). (42)

As long as v ∈ L∞ and δ1, δ3 ∈W 1
l , δ5 ∈ W 2

l , the function σ̃ will belong to W 2
l ,

1 ≤ l ≤ ∞. Indeed,

d

dt
(BT q +Q21z + δ5) = −Mz −BT

1 q − r1(δ),

d2

dt2
(BT q +Q21z + δ5) = −M1z +BT

2 q + (BT
1 Q12 −MB)v

+(Mδ1 +BT
1 δ3) − d

dt
r1(δ)

with the abbreviations B2 = AB1 − Ḃ1, M1 = MA + Ṁ − BT
1 Q11, and

r1 = r1(δ) := BT δ3 +Q21δ1 − δ̇5. Notice that BT
1 Q12 −MB = −R (see (30))

so that we finally arrive at

˙̃σ = σ̇0 −Mz −BT
1 q − r1, (43)

¨̃σ = σ̈0 − M1z +BT
2 q − RT v + r2 (44)

with r2 = r2(δ) := Mδ1 + BT
1 δ3 − ṙ1. Using the notations from (10) and

relations (30), the second order derivative can be equally expressed as

¨̃σ = (P + BT
2 q − M1z + r2) − wR =: P̃ − wR. (45)

On the set Iβ , where R ≥ m > 0 is guaranteed by (H2), define

ũs := P̃ /R. (46)

The first auxiliary result concerns a selection property for w = w(t):

Lemma 3.4 Let (z, q, v, ν) ∈W 1
∞ ×W 1

∞ ×L∞ ×L∞ be a solution of (LVIδ) for
some δ ∈ D̂ satisfying the additional assumption r1 ∈ W 1

2 , r2 ∈ L2. Then σ̃
defined by (41) belongs to W 2

2 , and

‖ũs − us‖2,Iβ = O(‖δ‖D̂ + ‖r2‖2). (47)

Further, w(t) ∈ {0, 1, ũs(t)} for almost every t ∈ [0, 1].

Proof. Relation (47) follows from (46) and the definition us = P/R on the
interval Iβ ⊃ [t1, t2]:

|ũs − us| ≤ m−1|BT
2 q −M1z + r2|

together with Theorem 1 yields the desired estimate.
In order to prove the selection property for w, consider next the set Ĩ = {t ∈

[0, 1] : σ̃ = 0}. It will be shown that, almost everywhere on Ĩ, ˙̃σ(t) = ¨̃σ(t) = 0.
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Let t ∈ Ĩ be a point where ˙̃σ(t) 6= 0 then σ̃ 6= 0 in a neighborhood of t, i.e., t is
a boundary point of an interval where σ̃ > 0. Due to σ̃ ∈ W 2

2 ⊂ C1, the number
of such points is at most countable so that they do not contribute to measĨ.
Now consider the second-order derivative of σ̃ on Ĩ: due to ¨̃σ ∈ L2, it is sufficient
to show that the function vanishes in all its Lebesgue points on the set Ĩ (see
Rudin, 1987). If ˙̃σ(t) = 0 but ¨̃σ(t) 6= 0, then it follows from

˙̃σ(τ) = ˙̃σ(t) +

∫ τ

t

¨̃σ(s) ds = (τ − t)

∫ τ

t
¨̃σ(s) ds

τ − t

that ˙̃σ 6= 0 for τ 6= t in a neighborhood of t. Again, t is a boundary point of
an open interval where σ̃ 6= 0, i.e. it belongs to some countable subset of Ĩ.
Therefore, almost everywhere on Ĩ, the relation ¨̃σ = 0 is valid. According to
(45), w(t) and ũs(t) then coincide almost everywhere on Ĩ whereas outside of
this set w = 0 or w = 1 depending on the sign of σ̃.

Next we will formulate the main structural result for (LVIδ). It will be shown
that, for appropriately chosen small δ, the control component w = v + u0 has
the same principal bang-singular-bang structure as u0. The idea of the proof
follows the argumentation from Felgenhauer (2012). The difficulty in the present
setting is the lack of an L∞ estimate for zδ and qδ (replacing in a sense (xδ−x0)
or (λδ − λ0)) whereas a crucial assumption in Theorem 3.1 from Felgenhauer
(2012) was the restriction to extremals satisfying ‖x− x0‖∞ + ‖λ− λ0‖∞ < ǫ
for certain small ǫ > 0.

Theorem 2 Let the assumptions (H1) and (H2) hold for (CP0). Further, for
given δ ∈ WD ⊂ D̂ with the additional property r1(δ), r2(δ) ∈ L∞, let ξδ =
(zδ, qδ, vδ, νδ) denote the solution of (LVIδ) with vδ ∈ Wβ. Then there exists a
constant ǭ > 0 such that, for all ǫ, δ satisfying

‖δ‖D̂ + ‖r1(δ)‖∞ + ‖r2(δ)‖∞ < ǫ ≤ ǭ, (48)

the function w = vδ + u0 has bang-singular-bang structure in the following
sense: there exist points t̃1 < t̃2 such that

w(t) =







0 on [0, t̃1),
ũs(t) on (t̃1, t̃2),
ū on (t̃2, 1],

and ‖w − u0‖1 + |t̃1 − t1| + |t̃2 − t2| = O(ǫ).
Moreover, 0 < m/2 ≤ ũs ≤ 1−m/2 < 1 a.e. on [t̃1, t̃2].

The proof requires a piecewise inspection of the sign of the switching function σ̃
(see Felgenhauer, 2012). Making a prediction for the possible value of w, we find
the prospective switching function and correct the control if the sign changes.
By u± abbreviate the assignments u+ ≡ 0 or u− ≡ 1. Then, for given t0 ∈ [0, 1],
consider the system

ẋ± = f(x±) + u±g(x±), x±(t0) = x0(t0),

λ̇± = −∇xH(x±, u±, λ±), λ±(t0) = λ0(t0).
(49)



574 U. Felgenhauer

(In this this part of the proof, p = 0 is fixed and thus will be omitted).
Under the smoothness assumptions on the data, there exists a constant ∆ > 0
such that, for each t0 ∈ [0, 1], the systems have unique solutions defined at least
on [t0 −∆, t0 +∆]. By σ± abbreviate (λ±)T g(x±); then

σ̇± = (λ±)T [f(x±), g(x±)], σ̈± = P± − u±R±

in analogy to (10). If t0 ∈ (t1 −∆/2, t2 +∆/2) and t ∈ (t1, t2) then

σ̈± = σ̈0 + (P± − P )− u±(R± −R)− (u± − u0)R

= ±R |u± − u0| + O(|t− t0|),

see Lemma 6.1. By assumptions (H1), (H2), R |u± − u0| ≥ m2 on (t1, t2) so
that the continuity of σ̈± yields

±σ̈± ≥ m2/2 (50)

for all t ∈ (t0 −∆/2, t0 +∆/2) if only ∆ is taken sufficiently small.
Similarly to (49), define z±, q± and σ̃± as solutions of

ż± = Az± +B(u± − u0)− δ1, z±(t0) = z(t0),
q̇± = −AT q± −Q11z

± −Q12(u
± − u0)− δ3, q±(t0) = q(t0),

σ̃± = σ0 +BT q± +Q21z
± + δ5.

(51)

To begin with, we will show that w = v+ u0 with v = vδ from (LVIδ) has a left
bang–arc with w ≡ 0 (and analogously, a right bang–arc with w ≡ ū ∈ {0, 1}) if
ǫ in (48) is taken sufficiently small (for comparison see Lemma 4.1, Felgenhauer,
2012):

Lemma 3.5 Let the Assumptions (H1) and (H2) hold. If ǭ > 0 is sufficiently
small then, for all δ satisfying (48), there exists a point t̄1 such that
|t̄1 − t1| =O(ǫ1/2), and w ≡ 0 on [0, t̄1].

Proof. Starting from the left, we see that σ0 = σ+ = P for all t ≤ t1, and
σ̈+ > m2/2 on Iβ ∩ [0, t1] if only β is chosen sufficiently small. Thus, from the
Taylor expansion of order two for σ+ at t = t1,

σ0 = σ+ > ρ > 0 ∀ t ∈ [0, t1 − 2
√

ρ/m2]

follows for ρ ∈ (0, β). By Lemma 6.2, (i), for t ≤ t1 we obtain

σ̃+ ≥ σ+ − |σ̃+ − σ+| > ρ− c′ǫ > ρ/2

for all t ≤ t1−O(
√
ρ) in case β > ρ ≥ 2c′ǫ: thus, for sufficiently small ǫ, setting

ρ′ = 2c′ǫ, t̄1 = t1 −
√

8c′ǫ/m2 we have σ̃+ = σ̃ > 0, and w ≡ 0 at least on
[0, t̄1].



Stability of variational inequalities for bang-singular-bang controls 575

The boundary points of the left and right end bang-arcs are given by

t̃1 = sup{t > 0 : σ̃ > 0 on [0, t]}, t̃2 = inf{t < 1 : |σ̃| > 0 on [t, 1]},

and satisfy 0 < t̃1 ≤ 1, 0 ≤ t̃2 < 1.

Lemma 3.6 Let the assumptions of Lemma 3.5 and Theorem 2 hold true. If
t̃1 < t̃2 and (t′, t′′) ⊂ (t̃1, t̃2) is an interval where either σ̃ > 0, or σ̃ < 0, then
|t′ − t′′| =O(ǫ2). As a consequence, ‖w − u0‖1 + ‖z‖∞ + ‖q‖∞ = O(ǫ).

Proof. Let I ′ = (t′, t′′) be an interval where σ̃ > 0. By Lemma 3.4, σ̃ coincides
with σ̃+ on I ′ where the latter is constructed with t0 = t′. If we further assume
that the interval is maximally extended, then ˙̃σ(t′) ≥ 0. Remember that

¨̃σ+ − σ̈+ =: φ+σ + ψ+
σ , (52)

φ+σ = (P − P+) +BT
2 (q

+ − q) +M1(z
+ − z)

with ‖φ+σ ‖∞,[t0,t] = O(|t− t0|),
ψ+
σ = BT

2 q + M1z + r2 with ‖ψ+
σ ‖2 = O(ǫ).

Without loss of generality, let ∆ be taken small enough to ensure

σ̈+(s) ≥ m2/2, |φ+σ (s)| < m2/8 ∀ s ∈ (t′, t′ +∆),

see (50). Defining the set ω+ = {t ∈ [0, 1] : |ψ+
σ (t)| > m2/8}, from

‖ψ+
σ ‖22 =

∫ 1

0

(ψ+
σ (s))

2ds ≥
∫

ω+

(ψ+
σ (s))

2ds ≥ m4

64
measω+

the estimate measω+ =O(ǫ2) is obtained.
Now consider the Taylor expansion for σ̃+ at t′: in case t ∈ (t′, t′ +∆),

σ̃+(t) = σ̃+(t′) + (t− t′) ˙̃σ+(t′) +

∫ t

t′
(t− s)¨̃σ+(s) ds

≥
∫

[t′,t]\ω+

(t− s)(m2/4)ds +

∫

[t′,t]∩ω+

(t− s)¨̃σ+(s) ds

≥ (m2/8)(t− t′)2 − (t− t′) · ‖¨̃σ+‖∞meas(ω+ ∩ [t′, t]).

At t = t′′, the function σ̃ = σ̃+ vanishes so that

t′′ − t′ ≤ c ·meas(ω+ ∩ [t′, t]) ≤ c ·measω+ = O(ǫ2). (53)

A similar estimate can be obtained for any interval (t̂′, t̂′′) ⊂ (t̃1, t̃2) where
σ̃ = σ̃− < 0.

The number of maximal subintervals of (t̃1, t̃2) where σ̃ ∈ C ⊆W 2
2 is strictly

positive, or strictly negative, is at most countable and the function vanishes at
the interval ends. If the end points are appropriately enumerated,

|σ̃(t)| 6= 0 for t′k < t < t′′k , k ∈ N ,
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from (53) we get the estimate
∑

k∈N

(t′′k − t′k) ≤ c
∑

k∈N

meas(ω+ ∩ [t′k, t
′′
k ]) ≤ c ·measω+ = O(ǫ2)

or finally, meas{t ∈ (t̃1, t̃2) : σ̃(t) 6= 0} = O(ǫ2).
Next, consider ũs from (46):

|ũs − us| = R−1|BT
2 q −M1z + r2| ≤ m−1(c (|z|+ |q|) + |r2|)

holds allover Iβ . Thus, for t′k = min{tk, t̃k}, t′′k = max{tk, t̃k}, k = 1, 2, we
obtain from Lemma 3.4

‖w − u0‖1 =

∫ t′′1

t′
1

|w − u0|dt +
∫ t′2

t′′
1

|ũs − u0|dt +
∫ t′′2

t′
2

|w − u0|dt+O(ǫ2)

=

∫ t′2

t′′
1

|ũs − us|dt + O(ǫ)

≤ m−1(c(‖z‖1 + ‖q‖1) + ‖r2‖1) + O(ǫ) = O(ǫ).

Finally, from (18) conclude that ‖z‖∞ + ‖q‖∞ =O(ǫ).

By the results of the previous lemma, from (52) we obtain the estimate

|¨̃σ+ − σ̈+| = O(ǫ + |t− t0|)

for all t satisfying |t− t0| < ∆. If ∆ and ǭ are sufficiently small then it follows
from (50) that, for given t0 ∈ (t1 −∆/2, t2 +∆/2),

±¨̃σ±(t) ≥ m2/4 ∀ t s.t. |t− t0| < ∆/2. (54)

We finish the section with the proof of Theorem 2:

Proof. Consider t̂0 = min{t1, t̃1}: by Lemma 3.5,

|t− t̂0| ≤ |t− t1| + max{0, t1 − t̃1} = |t− t1| + O(
√
ǫ). (55)

If σ+, σ̃+ are continuations of σ0, σ̃ from t0 = t̂0 then, due to Lemma 6.2,

| ˙̃σ+ − σ̇+| = O(ǫ + |t− t̂0|2) = O(ǫ+ |t− t1|2).

Further, (54) ensures that ¨̃σ+(t) ≥ m2/4 at least on (t̂1 − ∆/2, t̂1 + ∆/2).
Applying now the Implicit Function Theorem to ˙̃σ, the following property is
obtained: there exists a unique zero t̂1 of ˙̃σ near t1, and |t̂1 − t1| =O(ǫ). In
addition, the point is a strict local minimizer of σ̃+.
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In analogy to Felgenhauer (2012), consider the following situations:

Case 1: σ̃+(t̂1) > 0.

For t ∈ [t̂1 −∆/4, t̂1 −∆/4],

σ̃+(t) = σ̃+(t̂1) +

∫ t

t̂1

(t− s)¨̃σ+(s) ds >
m2

8
(t− t̂1)

2 > 0.

Therefore, w = u+ = 0 and σ̃ = σ̃+ at least for t ∈ [0, t̂1 + ∆/4] if ǫ is taken
sufficiently small. In particular, it may be assumed that t̂ = t̂1 + ∆/4 > t1.
Independently of ǫ, the above estimate yields

σ̃+(t̂) >
m2∆2

128

in contradiction to |σ̃| =O(ǫ) on (t1, t2) for all ǫ < ǭ (see (42)).

Case 2: σ̃+(t̂1) < 0.

In this case, the function σ̃+ has a zero point t′1 < t̂1 which is locally unique on
(t1 −∆/2, t̂1), and the Taylor expansion allows for deriving the estimate
|t′1 − t̂1| =O(

√
ǫ). In particular, suppose |t′1 − t1| < ∆/8.

The point t′1 is a control switching point with σ̇(t′1) < 0 so that near t′1

σ̃(t) =

{

σ̃+(t) if t < t′1,
σ̃−(t) if t > t′1.

Consider t ∈ (t′1, t
′
1 +∆/4): due to (50), the function σ̃ = σ̃− continued from

t0 = t′1 is strictly concave and

σ̃(t) = σ̃(t′1) + (t− t′1) ˙̃σ(t
′
1) +

∫ t

t′
1

(t− s)¨̃σ−(s) ds < −m
2

8
(t− t′1)

2.

As in Case 1, for appropriately chosen t we end up with a contradiction.

The only remaining case is σ̃+(t̂1) = 0. In this situation, t̂1 coincides with the
end point t̃1 of the bang-arc.

Analogously, one can carry out the analysis starting from the right and
obtain

σ̃(t̃k) = ˙̃σ(t̃k) = 0, k = 1, 2.

It remains to prove that σ̃ ≡ 0 on [t̃1, t̃2]:
Assume that (t′, t′′) ⊂ (t̃1, t̃2) is a (maximally extended) interval where σ̃ >

0, and w ≡ 0. Then the function σ̃ attains its (positive) maximum at certain
t̄ ∈ (t′, t′′). Denoting by σ̃+ the continuation of σ̃ from t0 = t̄, we have σ̃ = σ̃+

on the interval. In particular, it follows from (54) that ¨̃σ(t̄) > 0 in contradiction
to the local maximum property of the point.
Similarly, σ̃ < 0 on [t̃1, t̃2] can be excluded.
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4. The L1 stability result

The main result of the present paper consists in the following

Theorem 3 Let the assumptions (H1) and (H2) hold for (CP0). Then there
exist positive constants ǫ0, ǫ1 such that, for all p ∈ Π with |p| < ǫ0, the following
statements are true:

(i) on the set W1 = {ξ = (x, λ, u, µ) ∈ X : ‖u − u0‖1 < ǫ1} (with X =
W 1

1 ×W 1
1 × L1 × L∞), the variational inequality (VIp) has a unique solution

ξ(p) = (x(p), λ(p), u(p), µ(p)),

(ii) on the set W1, the solutions depend Lipschitz continuously on p, i.e.
‖ξ(p′)− ξ(p)‖X = O(|p′ − p|) for all p′, p ∈ Π such that max{|p′|, |p|} ≤ ǫ0.

As it was pointed out in Section 2.2, the solutions of (VIp) can be characterized
as fixed points of the mapping Φp from (17), i.e.,

Φp(u) := Λu(γ(p, u)) (56)

where Λu denotes the control component of the solution for (LVIδ), and the
right-hand side γ = γ(p, u) is defined by (16). Estimates for γ, depending,on
ǫ0, ǫ1 and u, are provided in Appendix 6.3. Together with Theorem 1, they
ensure in particular, existence and uniqueness of a solution w = Φp(u) for (LVIγ)
if only ǫ0 and ǫ1 are sufficiently small. Following the scheme of Robinson (1980),
the proof of Theorem 3 requires showing, first, the uniform strict contractivity
of Φp on U1 = {w ∈ U : ‖w − u0‖ ≤ ǫ1}, and, second, its Lipschitz continuity
w.r.t. p.

Lemma 4.1 There exist positive constants ǭ0, ǭ1, l0 and l̄ < 1 such that, for
|p| < ǫ0 ≤ ǭ0, and, ǫ1 ≤ ǭ1, the mapping Φp as a mapping from U1 to L1 is
Lipschitz continuous with a Lipschitz constant l ≤ l0(ǫ0 + ǫ1) ≤ l̄ < 1.

Proof. Let ǫ0 and ǫ1 be sufficiently small so that, for arbitrary u, u′ ∈ U1,
Φp(u) = w and Φp(u

′) = w′ are well-defined. Due to Theorem 2, each of the
functions w,w′ has bang-singular structure, i.e. there exist points t̃i, t̃

′
i, i = 1, 2,

such that

w(t) =







0 if 0 < t < t̃1,
ũs(t) if t̃1 < t < t̃2,
ū if t̃2 < t < 1,

w′(t) =







0 if 0 < t < t̃′1,
ũ′s(t) if t̃′1 < t < t̃′2,
ū if t̃′2 < t < 1.

The control values further satisfy ū = u0(t2+) and

0 <
m

2
≤ ũs, ũ

′
s ≤ 1− m

2
< 1.

On the singular arcs,

R(ũs − u0s) = BT
2 q −M1z + r2, R(ũ′s − u0s) = BT

2 q
′ −M1z

′ + r′2, (57)
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where (z, q) are the state-adjoint solution components of (LVIγ) for γ = γ(p, u),
and r2 = r̄2(p, u) (for the control input u′ the corresponding data are (z′, q′)
and r′2). Notice that, by Theorem 2, ũs, ũ

′
s as well as u0s are defined at least

on some open interval Iβ = {t ∈ [0, 1] : |σ0| < β} covering the singular arcs of
u0, w and w′ in case when ǫ0,1 are sufficiently small.

In a first step, estimate ‖y′−y‖1 for y(t) =
∫ t

0 (w(s)−u0(s))ds and similarly
defined y′: as a function on [0, 1], φ = y′ − y satisfies ‖φ‖1 ≤ ‖φ‖2 ≤ ‖φ‖∞.
From Lemma 6.3 and the proof of Lemma 3.2 we therefore get

‖y − y′‖1 + |h− h′| ≤ ‖y − y′‖2 + |h− h′|
≤ c ‖r(γ′)− r(γ)‖1,2 = O(ǫ0 + ǫ1) ‖u′ − u‖1.(58)

Secondly, we consider (u′s − ũs): by the representation (57),

m‖ũ′s − ũs‖1,Iβ ≤ ‖z′ − z‖1 + ‖q′ − q‖1 + ‖r2(p, u′)− r2(p, u)‖1.

Using z = ζ +By, q = η −Q12y and the BVP (25) for (ζ, η), we derive

‖z′ − z‖1 + ‖q′ − q‖1 ≤ ‖ζ′ − ζ‖∞ + ‖η′ − η‖∞ + c′‖y′ − y‖1
≤ c (‖γ′ − γ‖D + ‖y′ − y‖1) .

Thus, the Lipschitz estimates for γ and r2 from Appendix 6.3, together with
(58), allow to deduce

‖ũ′s − ũs‖1,Iβ = O(ǫ0 + ǫ1) ‖u′ − u‖1.

Finally, consider ‖w′ − w‖1: denoting by Ĩ1 and Ĩ2 the intervals between t̃1
and t̃′1 (respectively t̃2 and t̃′2), and by Ĩs the intersection (t̃1, t̃2) ∩ (t̃′1, t̃

′
2), we

have

‖w′ − w‖1 =

∫ 1

0

|w′(t)− w(t)| dt ≤
∫

Ĩ1∪Ĩ2

dt +

∫

Ĩs

|ũ′s − ũs| dt

≤ |t̃′1 − t̃1| + |t̃′2 − t̃2| + ‖ũ′s − ũs‖1,Iβ . (59)

In order to estimate |t̃′1 − t̃1|+ |t̃′2 − t̃2|, remember that (y′ − y) is given by

y′(t)− y(t) =

∫ t

0

(w′(τ) − w(τ)) dτ = (h′ − h) −
∫ 1

t

(w′(τ) − w(τ)) dτ.

In case of t̃1 ≤ t̃′1, we get from the first expression for t ∈ Ĩs the relation

|y′(t)− y(t)| ≥
∣

∣

∣

∣

∣

∫ t̃′1

t̃1

ũs(τ)dτ

∣

∣

∣

∣

∣

−
∫ t

t̃′
1

|ũ′s(τ) − ũs(τ)|dτ

≥ m

2
|t̃′1 − t̃1| − ‖ũ′s − ũs‖1,Iβ



580 U. Felgenhauer

(and the same final estimate holds in case of t̃1 > t̃′1, too). Analogously, from
the second expression for (y′ − y) and t ∈ Ĩs deduce

|y′(t)− y(t)| ≥ m

2
|t̃′2 − t̃2| − ‖ũ′s − ũs‖1,Iβ − |h′ − h|.

Notice that the length of Ĩs is close to |t2 − t1| >> (ǫ0 + ǫ1) so that we obtain

‖y′ − y‖1 ≥ c1|t̃′1 − t̃1| − ‖ũ′s − ũs‖1,Iβ ,
‖y′ − y‖1 ≥ c2|t̃′2 − t̃2| − |h′ − h| − ‖ũ′s − ũs‖1,Iβ ,

or

|t̃′1 − t̃1| + |t̃′2 − t̃2| ≤ c
(

‖y′ − y‖1 + |h′ − h| + ‖ũ′s − ũs‖1,Iβ
)

(60)

= O(ǫ0 + ǫ1) ‖u′ − u‖1.
Inserting the result into (59) yields ‖w′ −w‖1 =O(ǫ0 + ǫ1)‖u′ − u‖1 and hence
the lemma.

Besides the estimates for fixed p and varying u as considered above, continuity
results for γ and Φp w.r.t. the parameter input p will be useful:

Lemma 4.2 Let ǫ0,1 be sufficiently small. Then, for all u ∈ U1 and p, p̂ such
that |p| < ǫ0, |p̂| < ǫ0,

‖γ(p, u)− γ(p̂, u)‖D̂ + ‖Φp(u)− Φp̂(u)‖1 = O(|p− p̂|).

Proof. The proof repeats in essence the steps of the previous one:
Denote w = Φp(u), ŵ = Φp̂(u). According to the results of Theorem 2, both
control functions have bang-singular-bang structure given by junction points t̃1,2
and t̂1,2, and singular control functions ũs or ûs, respectively. For the related
integrated controls y, ŷ, in analogy to the previous proof the following estimate
is obtained from Lemmas 6.3, 6.4, Appendix 6.3:

‖ŷ − y‖1 + |ĥ− h| ≤ ĉy|p̂− p|.

Using further (60), we see that

|t̃1 − t̂1| + |t̃2 − t̂2| ≤ ‖ŷ − y‖1 + |ĥ− h| + ‖ûs − ũs‖1,Iβ ,

where the control difference is given by

ûs − ũs = R−1(BT
2 (q̂ − q)−M1(ẑ − z) + r̂2 − r2).

Remembering the construction of r2 and the functions x = x(·, u, p), x̂ = x(·, u, p̂)
etc., standard estimates for the canonical equations yield

‖r̂2 − r2‖1 = O(|p̂− p|),
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and similar results for z, ẑ, q, q̂:

‖ẑ − z‖1 + ‖q̂ − q‖1 ≤ c(‖γ̂ − γ‖D + ‖ŷ − y‖1) = O(|p̂− p|).

Combining the particular results allows for finishing the proof with

‖ŵ − w‖1 ≤ |t̃1 − t̂1| + |t̃2 − t̂2| + ‖ûs − ũs‖1,Iβ
≤ ‖ŷ − y‖1 + |ĥ− h| + ‖γ̂ − γ‖D = O(|p̂− p|).

After these preliminaries, the proof of Theorem 3 can be completed:

Proof. (Main steps are adopted from the proof of Theorem 2.1, Robinson, 1980.)
By Lemma 4.1, Φp(u) is a contractive map on U1 = {w ∈ U : ‖w− u0‖ ≤ ǫ1} if
|p| < ǫ0. Therefore, the existence of a fixed point follows by Banach’s Theorem
if only Φp is a self-map from U1 to U1. In a first step, consider Φp(u

0): by the
definition of the map and by Lemma 4.2,

‖Φp(u
0) − u0‖1 = ‖Λ(γ(p, u0)) − Λ(γ(0, u0))‖1 ≤ c0|p|

for some constant c0 independent of p. Consequently,

‖Φp(u)− u0‖1 ≤ ‖Φp(u)− Φp(u
0)‖1 + ‖Φp(u

0) − u0‖1
≤ l̄‖u− u0‖1 + c0|p| ≤ l̄ǫ1 + c0ǫ0 < ǫ1

if only ǫ0 < c−1
0 (1 − l̄)ǫ1. Consequently, for appropriately chosen ǫ0, ǫ1, the

mapping Φp has a unique fixed point u = u(p) on U1. Finding further x(p) =
x(·, u(p)), λ(p) = λ(·, u(p)) from the canonical equations, σ(p) = λ(p)T g(x(p), p),
and µ1(p), µ2(p) as the positive, respecitvely negative part of σ(p), a solution
ξ = ξ(p) of (VIp) is obtained.

The Lipschitz continuity of u = u(p) follows from the classical result of S.
M. Robinson (1980):

‖u(p)− u(q)‖1 ≤ (1− l̄)−1‖Φp(u(q))− Φq(u(q))‖1 = O(|p− q|).

Thus, the desired estimate for ‖ξ(p) − ξ(q)‖X is directly obtained from the
construction of (x, λ, µ) = (x(p), λ(p), µ(p)).

5. Example and conclusion

The following example is chosen to illustrate how the coercivity assumption
(H2) can be verified for problems of type (CP). In a preliminary step, an ex-
tremal with bang-singular-bang control structure satisfying (H1) has to be con-
structed. Consider

(P1ρ) min J(x, u) := k(x(T ), ρ) = x3(T ) +
ρ

2
(x21(T ) + x22(T )) (61)

subject to
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ẋ1 = x2 + u, ẋ2 = −u, ẋ3 =
1

2
x21, (62)

x(0) = (a, 0, 0)T , |u(t)| ≤ 1 a.e. in [0, T ] (63)

for given a, ρ > 0 and T > 0.
This problem represents a relaxation of problem (P1) in Felgenhauer (2012)
where additional end-point constraints x1(T ) = 0, x2(T ) = 0 are included. Via
synthesis techniques it was shown that, for a ∈ (1/2, 2) and sufficiently large T ,
there always exists a unique and locally stable bang-singular-bang extremal with
the properties (H1). Moreover, along the solution (x0, u0, λ0), R = 1 > 0 is
fulfilled. The construction can be repeated for the following perturbed problem,

(P2ξ) min J̃ξ(x, u) := k̃(x(T ), ξ, ρ) = x3(T ) +
ρ

2
(ξ21 + ξ22) (64)

subject to (62), (63) and x1(T ) = ξ1, x2(T ) = ξ2, if only |ξ| is sufficiently
small.
As the calculations from Felgenhauer (2012) show, the related objective function
values, as well as the switching points, will be differentiable functions of the
input ξ at least on a certain ball Br̄ = {ξ ∈ R

2 : |ξ| ≤ r̄}. Let (xξ, uξ) and
λξ denote the related extremal and associated adjoint function. The objective
function value k̃(xξ(T ), ξ, ρ) will attain its minimum on the ball Br̄ at a certain
point ξ∗ where (xξ, uξ) = (x∗, u∗). Now, the inequality

k̃(x∗(T ), ξ∗, ρ) = x∗3(T ) +
ρ

2
|ξ∗|2 ≤ k̃(x0(T ), 0, ρ) = x03(T )

shows |ξ∗|2 =O(ρ−1): thus, ξ∗ is an inner point of Br̄ if only ρ is sufficiently
large. In this case, the following holds true for the derivatives calculated by the
chain rule (see Fiacco and McCormick, 1968, Fiacco, 1983):

0 =
∂

∂ξi
k̃(xξ(T ), ξ, ρ)

∣

∣

∣

∣

(x∗,ξ∗)

=
∂

∂ξi
k̃(x∗(T ), ξ, ρ)

∣

∣

∣

∣

ξ=ξ∗
+ ∇x(T )k̃(x

ξ(T ), ξ∗, ρ)
∣

∣

∣

x=x∗

· ∂

∂ξi
x∗(T )

= ρ ξ∗i − λ∗i (T ), i = 1, 2.

The last relation yields additional terminal transversality conditions for λ∗

showing that (x∗, u∗) is a bang-singular-bang extremal for (P1ρ). The triple
(x∗, u∗, λ∗) satisfies all conditions of Pontryagin’s maximum principle together
with the requirements (H1).

It remains to check condition (H2). To this aim, consider the system (25)
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related to (P1ρ) for δ = 0, i.e

ζ̇1 = ζ2 − y, ζ̇2 = 0, ζ1(0) = ζ2(0) = 0,

ζ̇3 = x∗1(ζ1 + y), ζ3(0) = 0,
η̇1 = −ζ1 − y, η1(T ) = ρ(ζ1(T ) + h),
η̇2 = −η1, η2(T ) = ρ(ζ2(T )− h),
η̇3 = 0, η3(T ) = 0.

(65)

It is easy to see that ζ2 ≡ 0, η3 ≡ 0 on [0, T ]. In order to evaluate Ω(y, h) =
(Cv, v), we use

Ĉy = BT η = η1 − η2,
d

dt
Ĉy = −ζ1 + η1 − y,

and from (29) directly get

Ω(y, h) = Ĉ y · y
∣

∣

∣

t=T
−

(

d

dt
(Ĉ y), y

)

= (η1(T )− η2(T ))h−
∫ T

0

(η1(s)− ζ1(s)− y(s)) · y(s) ds

=

∫ T

0

y2(s) ds −
∫ T

0

(η̇1(s)− ζ̇1(s))ζ1(s) ds

+(η1(T )− η2(T ))h + (η1(T )− ζ1(T ))ζ1(T )

=

∫ T

0

(y2(s) + ζ21 (s)) ds + ρh(ζ1(T ) + 2h) + ρζ1(T ) (ζ1(T ) + h) − ζ21 (T )

=

∫ T

0

(y2(s) + ζ21 (s)) ds + 2ρh2 + 2hρζ1(T ) + (ρ− 1)ζ21 (T ).

Taking into account the estimate

|2hρζ1(T )| ≤ (ρ− 1)ζ21 (T ) +
ρ2

ρ− 1
h2

valid for all ρ > 1, finally obtain

Ω(y, h) ≥ c(ρ)h2 +

∫ T

0

y2(s) ds

with some c = c(ρ) > 0 if only ρ2 > 2. Therefore, condition (H2) is fulfilled for
the extremal (x∗, u∗) if the penalty parameter ρ is sufficiently large.

Conclusion

In the paper, bang-singular-bang optimal controls appearing in parameter de-
pendent problems of type (CPp) have been considered. The analysis so far
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was restricted to the case of scalar-valued control and an initial value prob-
lem for the vector-valued state function. Although further extensions seem to
be quite natural (and partly were successfully implemented in Aronna et al.,
2012b, already), the formulation of appropriate regularity or non-degeneracy
assumptions on boundary constraints for both the original and the linearized
variational inequalities is open yet.

The given results include local existence, uniqueness and stability for ex-
tremals of the problem under parameter perturbation. In particular, the struc-
ture of the control components remains to be stable for small parameter values
in a certain L1 neighborhood of the reference control, and L1 error estimates
are provided. Besides the system of first-order optimality conditions given as a
variational inequality VI, structural stability was proved for solutions of the lin-
earized system LVI under right-hand side perturbation δ restricted to a subset
of D̂. The additional assumptions made in Theorem 2 on the auxiliary per-
turbation terms r1(δ), r2(δ) look rather technical, but are naturally fulfilled for
the linearization errors γ, (15) and (17), which are to be inserted into LVI for
proving Theorem 3.

The solution behavior of LVI, however, can be considered also in more general
setting as the following statement shows. Here, the assumptions on the right-
hand side vector δ are weakened and, in the result, the control structure then
is stable only up to sets of small measure:

Theorem 4 Let the assumptions (H1) and (H2) hold for (CP0). Further, for
given δ ∈ D̂ with the additional property r1(δ), r2(δ) ∈ L∞, let v = vδ be a
solution of LVIredδ . Then there exist constants mr, ǭ > 0 such that, for all ǫ, δ
satisfying

‖δ‖D̂ + ‖r1(δ)‖∞ + ‖r2(δ)‖2 < ǫ ≤ ǭ, (66)

together with ‖r2(δ)‖∞ < mr, the function w = vδ + u0 has approximate bang-
singular-bang structure in the following sense:
There exist points t̃1 < t̃2 and a set ω∗ of measure O(ǫ) such that

w(t) =







0 on [0, t̃1),
ũs(t) on (t̃1, t̃2)\ω∗,
ū on (t̃2, 1],

and ‖w − u0‖1 + |t̃1 − t1| + |t̃2 − t2| = O(ǫ).

(The proof of the theorem will appear elsewhere.) The further investigation of
the linearized problems and their discretizations could be useful for designing
approximation methods not requiring a-priori knowlegde of the control struc-
ture.
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6. Appendix

6.1. Solution operators

Let Ψ = Ψ(t, s) denote the fundamental matrix solution for the linearized state
equation, i.e.

d

dt
Ψ(t, s) − A(t)Ψ(t, s) = 0,

d

ds
ΨT (t, s) + AT (s)ΨT (t, s) = 0, Ψ(t, t) = I.

Then functions z, q from (LVIδ), respectively (18) can be expressed as

z(t) = −Ψ(t, 0)δ2 +

∫ t

0

Ψ(t, s)(B(s)v(s) − δ1(s)) ds

=: (S v)(t) + zpartδ (t), (67)

q(t) =

∫ t

1

ΨT (s, t) (Q11(s) · (Sv)(s) +Q12(s)v(s) − δ3(s)) ds

−ΨT (1, t)(Kz(1)− δ4) +

∫ t

1

ΨT (s, t)Q11(s)z
part
δ (s)ds

=: (S̃v)(t) + qpartδ (t). (68)

Let us consider the term (BT q +Q21z) from (13): the above formulas yield

BT q +Q21z = (BT S̃ +Q21S) v + (BT qpartδ + Q21z
part
δ ), (69)

and further, for arbitrarily given w ∈ L2,

(w, (BT S̃ +Q21S)v) = (Sw,Q11Sv) + (Sw,Q12v)

+ (w,Q21Sv) + ((Sw)(1))
T
K ((Sv)(1)) . (70)

Analogously to (67)–(68), the solution of (25) takes the form

ζ = S1y + ζpartδ , η = S̃1y + W̃h + ηpartδ

where the maps operating on (y, h) are defined by

(S1y)(t) :=

∫ t

0

Ψ(t, s)B1(s)y(s) ds,

(S̃1y)(t) :=

∫ 1

t

ΨT (s, t)[Q11(s) · (S1y)(s) +MT (s)y(s)] ds+ΨT (0, t)K Ŝ1y,

(W̃h)(t) := ΨT (0, t)W h.

The formulas show that, in case of y ∈ L2, δ ∈ D, the functions η and ζ belong
to W 1

1 , and ζ
part
δ , ηpartδ depend Lipschitz continuously on δ.
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6.2. Auxiliary estimates

In the following it will be assumed that ǫ is a common bound for ‖δ‖D̂ and
‖r1(δ)‖∞. There exist constants ǭ > 0 and ∆ > 0 such that, for arbitrary
t0 ∈ [0, 1], (x0, λ0) can be continued by (x±, λ±) at least to [t0 −∆, t0 +∆]. If,
in addition, ǫ < ǭ, then there exist similar continuations (z±, q±) for (z, q) on
[t0 −∆, t0 +∆], too. Without loss of generality, assume ∆ << 1.

Lemma 6.1 Let x±, λ±, z± and q± be defined by (49), (51). Then,

(i) for 0 ≤ t0 ≤ 1, t0 −∆ ≤ t ≤ t0 +∆: |x± − x0| + |λ± − λ0| =O(|t− t0|),
and similarly, |z± − z|+ |q± − q| =O(|t− t0|),

(ii) for t0 = 0, 0 ≤ t ≤ t1 +∆: |x+ − x0| + |λ+ − λ0| =O(max{0, t− t1}),
and |z+| + |q+| =O(ǫ+max{0, t− t1}),

(iii) for 0 ≤ t0 ≤ 1, t0 −∆ ≤ t ≤ t0 +∆:

|z± − x± + x0| + |q± − λ± + λ0| =O(ǫ+ |t− t0|2).

Lemma 6.2 For σ± = (λ±)T g(x±), σ0 = (λ0)T g(x0) and σ̃± constructed by
(41), i.e.

σ̃± = σ0 + BT q± + Q21z
± + δ̃5

(with data as in Lemma 6.1), the following estimates hold:

(i) for t0 = 0, t ≤ t1 +∆: |σ̃+ − σ+| =O(ǫ+max{0, t− t1}),
(ii) for 0 ≤ t0 ≤ 1, |t− t0| ≤ ∆: | ˙̃σ+ − σ̇+| =O(ǫ+ |t− t0|2).

Proof. Consider the values of the switching functions σ̃+ and σ+ at t: for ap-
propriate constants c, c′ etc.,

|σ̃+ − σ+| ≤ |(λ0)T g(x0)− (λ+)T g(x+)| + |BT q+ + Q21z
+ + δ̃5|

≤ c′(|x+ − x0|+ |λ+ − λ0|) + c′′(|z+|+ |q+|) + |δ̃5|
≤ c (ǫ+max{0, t− t1})

showing part (i) of the lemma. For the time-derivatives obtain

˙̃σ+ − σ̇0 = −BT
1 q

+ −Mz+ − r1,

σ̇+ − σ̇0 = (λ+ − λ0)T [f0, g0] + (λ+)T
(

[f+, g+]− [f0, g0]
)

= −BT
1 (λ

+ − λ0) − M(x+ − x0) + O(|x+ − x0|2 + |λ+ − λ0|2)

due to B1 = −[f0, g0] and M = −(λ0)T∇[f0, g0]. Therefore,

˙̃σ+ − σ̇+ = −BT
1 (q

+ − λ+ + λ0)−M(z+ − λ+ + λ0)− r1 + O(|t− t0|2),
| ˙̃σ+ − σ̇+| = O(ǫ + |t− t0|2).
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6.3. Rhs estimates related to the fixed point problem

Lemma 6.3 Let γ = γ(p, u) be given by (16). Then, for |p| ≤ ǫ0 and u, u′ ∈
U1 = {w ∈ U : ‖w − u0‖1 ≤ ǫ1}, the following estimates hold:

‖γ(p, u)‖D = O
(

|p| + ‖u− u0‖21
)

,

‖γ(p, u)‖D̂ = O
(

|p| + ‖u− u0‖3/21

)

,

‖γ(p, u′)− γ(p, u)‖D = O(ǫ0 + ǫ1) ‖u′ − u‖1.

Proof. Let x = x(u), λ = λ(u) and σ = σ(u) = λ(u)T g(x(u)) be determined by
(6), (7). Standard estimates yield

‖x− x0‖1,1 + ‖λ− λ0‖1,1 + ‖σ − σ0‖2,1 = O(|p|+ ‖u− u0‖1).

Consider now the components of γ: a.e. on [0, 1],

γ1 = ẋ0 − ẋ+A(x − x0) +B(u− u0)

= f(x0, 0) + u0g(x0, 0) − f(x, 0)− u0g(x, 0) + ∇(f0 + u0g0)(x− x0)

+ f(x, 0)− f(x, p) + u0(g(x, 0)− g(x, p)) − (u− u0)(g(x, p) − g(x0, 0)),

|γ1| = O(|p|+ |x− x0|2) + |u− u0|O(|p|+ |x− x0|),

analogously

|γ3| = O(|p|+ |x− x0|2 + |λ− λ0|2) + |u− u0|O(|x− x0|+ |λ− λ0|),
|γ2| = |a(0)− a(p)| = O(|p|), |γ4| = O(|p|+ |x(1) − x0(1)|2).

For the last component γ5 and its time derivative γ̇5 obtain

γ5 = σ − σ0 −BT (λ− λ0)−Q21(x− x0)

= λT (g(x, p)− g(x0, 0)) − (λ0)T∇g0(x− x0)

= λT (g(x, p)− g(x, 0)) + (λ− λ0)T (g(x, 0)− g0)

+ (λ0)T (g(x, 0)− g0 −∇g0(x− x0)),

|γ5| = O(|p|+ |x− x0|2 + |λ− λ0|2),

γ̇5 = λ̇T (g(x, p)− g0) + λT (∇g(x, p)ẋ−∇g(x, 0))ẋ0)− (λ̇0)T∇g0(x− x0)

−(λ0)T (∇g0(ẋ− ẋ0) + (x− x0)T∇2g0ẋ0)

= λ̇T (g(x, p)− g(x, 0)) + λT (∇g(x, p)−∇g(x, 0))ẋ
+(λ̇− λ̇0)T (g(x, 0)− g0) + (λ− λ0)T (∇g(x, 0)ẋ−∇g0ẋ0)
+(λ̇0)T (g(x, 0)− g0 −∇g0(x− x0)) + (λ0)T (∇g(x, 0)−∇g0)(ẋ− ẋ0)

+ (λ0)T (∇g(x, 0)−∇g0 −∇2g0(x− x0))ẋ0

so that

|γ̇5| = O(|p|+ |x− x0|2 + |λ− λ0|2) + |u− u0|O(|x− x0|+ |λ− λ0|). (71)
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Summing up the results, for |p| ≤ ǫ0 and ‖u− u0‖1 ≤ ǫ1, we get the relations

‖γ1‖∞ + ‖γ3‖∞ + ‖γ5‖1,∞ = O(ǫ0 + ǫ1), |γ2| = O(ǫ0),
‖γ1‖1 + ‖γ3‖1 + |γ4| + ‖γ5‖1,1 = O(ǫ0 + ǫ21).

(72)

For estimating γ̇5 we make use of u, u0 ∈ U so that |u − u0| ≤ 1 almost every-
where on [0, 1] and consequently, ‖u− u0‖22 ≤ ‖u− u0‖1. Therefore,

‖γ̇5‖2 = O(ǫ0 + ǫ21) + O(ǫ0 + ǫ1)‖u− u0‖2 = O(ǫ0 + ǫ
3/2
1 ). (73)

It remains to show the Lipschitz property for γ = γ(p, u) defined by (15):

γ̄1(p, u
′)− γ̄1(p, u) = ẋ− ẋ′ +A(x′ − x) +B(u′ − u)

= f(x, p) + u0g(x, p)− g(x′, p)− u0g(x′, p)

+∇(f0 + u0g0)(x′ − x) + (u′ − u)g0

+(u− u0)g(x, p)− (u′ − u0)g(x′, p)

= O(ǫ0 + ǫ1)|x′ − x|+ (u− u0)(g(x, p)− g(x′, p))

−(u′ − u)(g(x′, p)− g0)

= O(ǫ0 + ǫ1)(|x′ − x|+ |u′ − u|),
analogously obtain

γ̄3(p, u
′)− γ̄3(p, u) = λ̇− λ̇′ −AT (λ′ − λ)−Q11(x

′ − x)−Q12(u
′ − u)

= O(ǫ0 + ǫ1)(|x′ − x|+ |λ′ − λ|+ |u′ − u|).
The last function term gives

γ̄5(p, u
′)− γ̄5(p, u) = σ′ − σ −BT (λ′ − λ)−Q21(x

′ − x)

= (λ′)T g(x′, p)− λT g(x, p)− (λ′ − λ)T g0

−(λ0)T∇g0(x′ − x)

= (λ′ − λ)(g(x′, p)− g0) + (λ− λ0)T (g(x′, p)− g(x, p))

+(λ0)T (g(x′, p)− g(x, p)−∇g0(x′ − x))

= O(ǫ0 + ǫ1)(|x′ − x|+ |λ′ − λ|+ |u′ − u|).
The functions x, λ (and x′, λ′, respectively) are given as solutions of the state
and adjoint equations (6), (7) for given u (or u′ respectively) and fixed parameter
value p. In L∞, their differences are bounded by O(‖u′ − u‖1). Together with
the above formulas, the estimates for γ1, γ3 and γ5 immediately follow. Direct
estimates for the boundary terms γ2, γ4 complete the proof.

Lemma 6.4 Suppose the assumptions of the previous lemma hold. According to
43, 44, let r̄(p, u) = r(γ(p, u)), r̄1,2(p, u) = r1,2(γ(p, u)) denote

r(γ) = BT qpartγ + Q21z
part
γ + γ5,

r1(γ) = BT γ3 + Q21γ1 − γ̇5,

r2(γ) = BT
1 γ3 + Mγ1 − ṙ1(γ).
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Then r̄, r̄1 ∈W 1
∞ and r̄2 ∈ L∞ with

‖r̄‖1,∞ + ‖r̄1‖∞ + ‖r̄2‖∞ = O(ǫ0 + ǫ1).

Moreover, r, r̄1 and r̄2 are lipschitzian w.r.t. u in the following sense:

‖r̄(p, u′)− r̄(p, u)‖1,∞ = O(ǫ0 + ǫ1) ‖u′ − u‖1,
‖r̄1(p, u′)− r̄1(p, u)‖∞ + ‖r̄2(p, u′)− r̄2(p, u)‖1 = O(ǫ0 + ǫ1) ‖u′ − u‖1.

Proof. The analysis starts with

r(γ) = BT qpartγ +Q21z
part
γ + γ5, (74)

where the functions zpart, qpart solve (18) for v = 0, δ = γ(p, u). As functions
in L∞, they are Lipschitz continuous w.r.t. γ so that

‖r(γ′)− r(γ)‖∞ = O(‖γ′ − γ‖D + ‖γ′5 − γ5‖∞).

The estimates from Lemma 6.3 therefore yield

‖r̄(p, u′)− r̄(p, u)‖∞ = O(ǫ0 + ǫ1) ‖u′ − u‖1.

Next we consider r1,2 = r̄1,2(p, u) (see 43, 44):

r1 = BTγ3 + Q21γ1 − γ̇5

= BT (λ̇0 − λ̇−AT (λ− λ0)−Q11(x− x0)−Q12(u − u0))

+Q21(ẋ
0 − ẋ+A(x− x0) +B(u− u0))

−σ̇ + σ̇0 +BT (λ̇− λ̇0) +Q21(ẋ − ẋ0) + ḂT (λ− λ0) + Q̇21(x− x0)

= σ̇0 − σ̇ − M(x− x0) − BT
1 (λ− λ0)

with W 1
∞ matrix functions B1 and M (see Remark 1, in Section 3.1). Thus,

r1 ∈W 1
∞.

Analogously, we obtain

r2 = σ̈ − σ̈0 +M1(x− x0)−BT
2 (λ− λ0) + R(u− u0)

where R = −(λ0)T
[

g0, [f0, g0]
]

∈ W 1
∞, and M1, B2 ∈ L∞. Indeed, by direct

calculation one can find the following representations for B2 and M1:

B2 =
[

f0[f0, g0]
]

+ u0
[

g0, [f0, g0]
]

,

M1 = −(λ0)T∇x

([

f0, [f0, g0]
]

+ u0
[

g0, [f0, g0]
])

.

Summing up, we obtain the estimate ‖r1‖∞ + ‖r2‖∞ =O(ǫ0 + ǫ1).
Returning now to the estimate for r = r(γ): differentiating (74) leads to

ṙ(γ) = BT
1 q

part
γ −Mzpartγ − r1(γ)

and, together with the former estimates, ‖r̄‖1,∞ = O(ǫ0 + ǫ1) follows.
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It remains to consider the Lipschitz properties of r̄1, r̄2 and ˙̄r w.r.t. u:

r1(γ
′)− r1(γ) = σ̇ − σ̇′ − M(x′ − x) − BT

1 (λ
′ − λ)

= λT [f, g]− (λ′)T [f ′, g′] + (λ0)T∇[f0, g0](x′ − x)

+(λ′ − λ)[f0, g0]

= −(λ′ − λ)T
(

[f ′, g′]− [f0, g0]
)

−λT ([f ′, g′]− [f, g]) + (λ0)T∇[f0, g0](x′ − x)

= O(ǫ0 + ǫ1) (|x′ − x|+ |λ′ − λ|) ,

r2(γ
′)− r2(γ) = σ̈′ − σ̈ +M1(x

′ − x)−BT
2 (λ

′ − λ) + R(u′ − u)

= (P̂ ′ − u0R̂′ − P̂ + u0R̂) + (R− R̂′)(u′ − u)

+(R̂− R̂′)(u− u0) + M1(x
′ − x) − BT

2 (λ
′ − λ)

where P̂ = λT [f, [f, g]] , R̂ = λT [g, [f, g]] denote the data corresponding to
(x(u), λ(u)), and the prime is used for (x′, λ′) = (x(u′), λ(u′)). Using the repre-
sentations found for M1 and B2, we see that

BT
2 (λ

′ − λ) − M1(x
′ − x) =

(λ0)T∇x

[

f0, [f0, g0]
]

(x′ − x) + (λ′ − λ)T
[

f0, [f0, g0]
]

+u0
(

(λ0)T∇x

[

g0, [f0, g0]
]

(x′ − x) + (λ′ − λ)T
[

g0, [f0, g0]
])

approximates (P̂ ′ − P̂ − u0R̂′ + u0R̂) up to O(ǫ0 + ǫ1) (|x′ − x|+ |λ′ − λ|), so
that we obtain

‖r2(γ′)− r2(γ)‖1 = O(ǫ0 + ǫ1)‖u′ − u‖1.
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