PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wavelet based classification of skin lesion images

Identyfikatory
Warianty tytułu
PL
Klasyfikacja obrazów zmian skórnych
Języki publikacji
EN
Abstrakty
EN
Visual examination of the early stages of the melanocytic skin cancer (melanoma) may often lead to a false diagnosis. Only the resection and then histologic examination of the lesion can fully detect malignant transformations of the skin. This is the reason why development of non-invasive methods for dermatological diagnosis, like dermatoscopy, is of key importance. We build a MLP-based binary classifier for discriminating melanoma from dysplastic nevus utilizing textural information contained in the skin lesion images taken in dermatoscopic examinations. Our analysis is based on the multiresolution wavelet-based decomposition of the images. Significant features of both classes are found by means of the Ridge regression models. Discriminating melanoma from dysplastic nevus with this method yields a sensitivity and specificity of 89.5% and 90%, respectively.
PL
Wizualna ocena wczesnych stanów procesu nowotworzenia skóry może prowadzić do błędnej diagnozy. Jedynie resekcja oraz histologiczna ocena może ocenić obecność procesu nowotworzenia. Stąd potrzeba nieinwazyjnej oceny w dermatologii jest potrzebą chwili. Zbudowaliśmy bazujący na MLP binarny klasyfikator dla dyskryminacji melanoma w oparciu o obrazy uzyskane dermatoskopowo. Metoda bazuje na dekompozycji obrazu. Model regresji Ridge'go został zaadaptowany dla klasyfikacji obrazu co dało specyficzność oceny rzędu 89.5% i 90%.
Rocznik
Strony
43--49
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Department of Dermatoiogy, Coliegium Medicum, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Marks R., Epidemiology of melanoma, Clin. Exp. Dermatol. 25: 459-463 (2000).
  • 2. Thorn M., Ponten R, Bergstrom R. et al., Clinical and histopathologic predictors of survival in patients with malignant melanoma: a population-based study in Sweden. J Natl Cancer Inst 86: 761-769 (1994).
  • 3. Westerhoff K., McCarthy W.H., Menzies S.W., Increase in the sensitivity for melanoma diagnosis by primary care physicians using skin surface microscopy. Br J Dermatol 143:1016-1020 (2000).
  • 4. Odom R.B., James W.H., Berger T.G., Melanocytic nevi and neoplasms, in: Andrews' Diseases of the Skin, 9th ed., 881-889 Philadelphia (2000).
  • 5. Dial W.F., ABCD rule aids in preoperative diagnosis of malignant melanoma, Cosmetic Dermatol. 8: 32-34 (1995).
  • 6. Carli P., De Giorgi V., Palli D. et al., Preoperative assessment of melanoma thickness by ABCD score of dermatoscopy, J. Am. Acad. Dermatol., 43:459-466 (2000).
  • 7. Johr R.H., Dermatoscopy: alternative melanocytic algorithms the ABCD rule of dermatoscopy, Menzies scoring method, and 7-point checklist, Clinics in Dermatology, 20: 240-247 (2002).
  • 8. Argenziano G., Fabbrocini G., Carli P. et al., Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134: 1563-70 (1998).
  • 9. Żabińska-Płazak E., Wojas-Pelc A., Dyduch G.: Video-dermatoscopy in the diagnosis of melanocytic skin lesions, Bio-Algorithms and Med-Systems, 1: 333-338 (2005).
  • 10. Carli P., De Giorgi V., Gianotti B. et al., Dermatoscopy and early diagnosis of melanoma. Arch Dermatol 137:1641-1644 (2001).
  • 11. Menzies S.W., Automated epiluminescence microscopy: human vs machine in the diagnosis of melanoma. Arch Dermatol 135: 1538-1540 (1999).
  • 12. http://www.dermogenius.com/ http://www.dermamedical-systems.com/
  • 13. Dhawan A.P., Early detection of cutaneous malignant melanoma by three dimensional nevoscopy, Comp. Meth. Prog. Biomed. 21: 59-68 (1985).
  • 14. Piccolo D., Smolle J., Argenziano G. et al., Teledermatoscopy results of a multicentre study on 43 pigmented skin lesions, J. Telemed. Telecare., 6: 132-137 (2000).
  • 15. Robinson J.K., Nickoloff B.J., Digital epiluminescence microscopy monitoring of high-risk patients, Arch. Dermatol. 140: 49-56 (2004).
  • 16. Piccolo D., Smolle J., Wolf I.H. et al., Face-to-face diagnosis vs telediagnosis of pigmented skin tumors: a teledermato-scopic study. Arch Dermatol. 135:1467-1471 (1999).
  • 17. Paine S., Cockburn J., Noy S. et al., Early detection of skin cancer: knowledge, perceptions and practices of general practitioners in Victoria. Med. J. Aust. 161: 188-195 (1994).
  • 18. Patwardhan S.V., Dai S., Dhawan A.P., Multi-spectral image analysis and classification of melanoma using fuzzy membership based partitions, Computerized Medical Imaging and Graphics, 29: 287-296 (2005).
  • 19. Patwardhan S.V., Dhawan A.P., Relue P.A., Classification of melanoma using tree structured wavelet transforms, Computer Methods and Programs in Biomedicine, 72:223-239 (2003).
  • 20. Chang T., Kuo C.C.J., Texture Analysis and Classification with Tree-Structured Wavelet Transform, IEEE Transactions on Image Processing, 2: 429-441 (1993).
  • 21. Kadiyala M., DeBrunner V., Effect of wavelet bases in texture classification using a tree structured wavelet transform, 33 Asilomar Conference on Signals, Systems, and Computers, 2: 1292-1296 (1999).
  • 22. Mallat S.G., A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Transactions on pattern analysis and machine intelligence, 11: 674-693 (1989).
  • 23. Wang J.W., Chen C.H., Chien W.M., Tsai CM., Texture classification using non-separable two-dimensional wavelets, Patt.Rec. Left., 19:1225-1234 (1998).
  • 24. Kovacevic J., Vatterli M., Nonseparable Multidimensional Perfect Reconstruction Filter Banks and Wavelet Bases for Rn, IEEE Trans. Inf. Theor., 38: 533-555 (1992).
  • 25. Mojsilovic A., Popovic M.V., Rackov D.M., On the selection of an optimal wavelet basis for texture characterization, IEEE Transactions on Image Processing, 9: 2043-2050 (2000).
  • 26. An Analysis of Wavelet Characteristics in Image Compression, SPIE Conference on Wavelets: Applications in Signal and Image Processing (2003).
  • 27. Porter R., Canagarajah N., A Robust Automatic Clustering Scheme for Image Segmentation Using Wavelets, IEEE Transactions on Image Processing 5: 662-665 (1996).
  • 28. Daubechies I., Ten Lectures on Wavelets, S.I.A.M., Philadelphia, 1992.
  • 29. Numerical Recipes in C. The art of scientific computing, PWN 1999, pp. 591-606.
  • 30. Receiver operating characteristic (ROC) analysis: Basic principles and applications in radiology, European Journal of Radiology, 27: 88-94 (1998).
  • 31. http://zti.if.uj.edu.pl/~merkwirth/entool.htm
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c7a0f53-0fcb-47be-82f6-d79cb4ce742e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.