Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, we demonstrated a method of controllably synthesizing one-dimensional nanostructures having a dense or a hollow structure using fibrous sacrificial templates with tunable crystallinity. The fibrous Ga2O3 templates were prepared by calcining the polymer/gallium precursor nanofiber synthesized by an electrospinning process, and their crystallinity was varied by controlling the calcination temperature from 500°C to 900°C. GaN nanostructures were transformed by nitriding the Ga2O3 nanofibers using NH3 gas. All of the transformed GaN nanostructures maintained a one-dimensional structure well and exhibited a diameter of about 50 nm, but their morphology was clearly distinguished according to the crystallinity of the templates. When the templates having a relatively low crystallinity were used, the transformed GaN showed a hollow nanostructure, and as the crystallinity increased, GaN was converted into a denser nanostructure. This morphological difference can be explained as being caused by the difference in the diffusion rate of Ga depending on the crystallinity of Ga2O3 during the conversion from Ga2O3 to GaN. It is expected that this technique will make possible the tubular nanostructure synthesis of nitride functional nanomaterials.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
709--712
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
- Hanyang University, Dept. of Advanced Materials Science and Engineering, Ansan 15588, Republic of Korea
autor
- Seoul National University of Science And Technology, Dept. of Materials Science and Engineering, Seoul 01811, Republic of Korea
autor
- Hanyang University, Dept. of Advanced Materials Science And Engineering, Ansan 15588, Republic of Korea
autor
- University of Nevada, Dept. of Mechanical Engineering, Las Vegas, 4505 S. Maryland PKWY Las Vegas, NV 89154, United States
autor
- Hanyang University, Dept. of Advanced Materials Science and Engineering, Ansan 15588, Republic of Korea
autor
- Seoul National University of Science And Technology, Dept. of Materials Science and Engineering, Seoul 01811, Republic of Korea
Bibliografia
- [1] X. Yia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003).
- [2] L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, M. L. Brongersma, Nat. Mater. 8, 643 (2009).
- [3] C. M. Hangarter, Y.‐I. Lee, S. C. Hernandez, Y.‐H. Choa, N. V. Myung, Angew. Chem. Int. Ed. 49, 7081 (2010).
- [4] W. Han, S. Fan, Q. Q. Li, Y. D. Hu, Science 277, 1287 (1997).
- [5] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally, Nat. Mater. 1, 106 (2002).
- [6] X. Zhang, Q. Liu, B. Liu, W. Yang, J. Li, P. Niu, X. Jiang, J. Mater.
- [7] H. Wu, Y. Sun, D. Lin, R. Zhang, C. Zhang, W, Pan, Adv. Mater. 21, 227 (2009).
- [8] F. Lu, L. Liu, J. Tian, Appl. Surf. Sci. 497, 143791 (2019).
- [9] S. W. Eaton, A. Fu, A.B. Wong, C.-Z. Ning, P. Yang, Nat. Rev. Mater. 1, 16028 (2016).
- [10] J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119, 5298 (2019)
- [11] G.-D. Lim, J.-H. Yoo, M. Ji, Y.-I. Lee, J. Alloys Compd. 806, 1060 (2019).
- [12] J. Xue, J. Xie, W. Liu, Y. Xia, Acc. Chem. Res. 50, 1976 (2017).
- [13] Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 15, 641 (2003).
- [14] F. Caruso, R. A. Caruso, H. Mohwald, Science 282, 1111 (1998).
- [15] Y.-I. Lee, Mater. Chem. Phys. 180, 104 (2016).
Uwagi
1. This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c789fff-50fe-4834-a09a-d5ba48b80605