PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue safety verification of riveted steel railway bridges using probabilistic method and standard S-N curves

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Weryfikacja poziomu zmęczenia stalowych, nitowanych mostów i wiaduktów kolejowych metodą probabilistyczną i normowymi krzywymi S-N
Języki publikacji
EN
Abstrakty
EN
The current fatigue evaluation procedures in Europe and North American bridge codes do not account for the degree of uncertainty in load and resistance models. However, the variability of cycling loading and material properties have a significant influence on fatigue safety verification. A fatigue verification is contingent on the accumulated load cycles and the fatigue category; which, in turn, depends on member type and its connections. Assessment of structural safety can be evaluated more completely using probabilistic methods that provide fatigue prediction in terms of the probability of crack initiation. This method provides more information about the expected performance of a structural component; therefore, the structure can be used in service for a significantly longer time. In this article, the comparison of fatigue evaluation is presented using Eurocode, North American Standard - AREMA, and the new approach using the probabilistic method. These methods are demonstrated on the riveted built-up beams of the steel deck plate girder (DPG) railway bridge using data from field monitoring.
PL
Obecne procedury oceny zmęczenia w europejskich i amerykańskich normach mostowych nie uwzględniają stopnia niepewności w modelach obciążenia i nośności konstrukcji. Jednak zmienność obciążenia cyklicznego i zmienność nośności wynikająca z właściwości materiału i ich degradacji, mają istotny wpływ na weryfikację bezpieczeństwa z uwagi na zmęczenie konstrukcji. Ocena zmęczenia zależy od skumulowanych cykli obciążenia i kategorii zmęczeniowej dla detalu konstrukcyjnego; co z kolei zależy od typu elementu i jego połączeń. Ocena bezpieczeństwa konstrukcji może być przeprowadzona dokładniej przy użyciu metody probabilistycznej, która pozwala na określenie przewidywanego zmęczenia za pomocą prawdopodobieństwa powstania pęknięcia. Ta metoda dostarcza więcej informacji o oczekiwanej przydatności elementu konstrukcyjnego do dalszej eksploatacji; dzięki temu konstrukcja może być użytkowana przez znacznie dłuższy czas. W artykule przedstawiono porównanie oceny zmęczenia z wykorzystaniem Eurokodu, normy amerykańskiej - AREMA oraz nowego podejścia wykorzystującego metodę probabilistyczną. Metody te zademonstrowano na nitowanych, stalowych dzwigarach mostów kolejowych (DPG) z wykorzystaniem danych z monitoringu terenowego.
Rocznik
Strony
625--642
Opis fizyczny
Bibliogr. 39 poz., il., tab.
Twórcy
  • Road and Bridge Research Institute, Warsaw, Poland
Bibliografia
  • [1] J. Olofsson et al., “Assessment of European Railway Bridges for Future Traffic Demands and Longer Lives - EC Project “Sustainable Bridges”. Journal of Structure and Infrastructure Engineering, vol.1, no. 2, pp. 93-100, 2005, DOI: 10.1080/15732470412331289396.
  • [2] A.M. Rakoczy, D. Otter, and S. Dick, “Railroad bridge fatigue life estimation using the probabilistic method and new fatigue resistance for riveted details”. Structure and Infrastructure Engineering, Maintenance, Management, Life-Cycle Design and Performance, vol. 16, no. 3, pp. 381-393. 2020, DOI: 10.1080/15732479.2019.1663220.
  • [3] F. Moreu, J. LaFave, “Current Research Topics: Railroad Bridges And Structural Engineering”. NSEL Report Series Report No. NSEL-032 October 2012. http://hdl.handle.net/2142/34749.
  • [4] H. Isami, “Plate-Girder Construction”. Publisher: BiblioBazaar. 2008.
  • [5] D. Otter, S. Dick, and A.M. Rakoczy, “Update on FAST Bridge Research and Testing”. In Proc. AREMA 2017 Annual Conference. Indianapolis, Indiana USA. September 2017.
  • [6] R.A.P. Sweeney, “Resistance and Loading for Steel Bridge Fatigue Life Evaluation”. Proceedings of AREMA Conference. Minneapolis MN, USA, 2015.
  • [7] American Railway Engineering and Maintenance of Way Association, Manual for Railway Engineering AREMA. Chapter 15 - Steel Structures, Lanham, Maryland, 2020.
  • [8] Comité Européen de Normalisation, EN 1990. Eurocode: Basic design rules of structures, Warsaw 2004.
  • [9] Comité Européen de Normalisation, EN 1991-2. Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges, Warsaw 2007.
  • [10] H. Zobel, T. Alkhafaji, and M. Wróbel, “Metoda okreslanie trwałosci mostów drogowych”. Inżynieria i Budownictwo, no. 11, pp. 582-587, 2017.
  • [11] T. Siwowski, “Fatigue assessment of existing riveted truss bridges: case study”. Bulletin of The Polish Academy Of Sciences - Technical Sciences, vol. 63, no. 1, 2015, DOI: 10.1515/bpasts-2015-0014.
  • [12] E. Bruhwiler, I.F.C. Smith, and M. Hirt, “Fatigue and Fracture of Riveted Bridge Members”. Journal of the Structural Engineering vol. 116, no. 1, pp. 198-213, 1990, DOI: 10.1061/(ASCE)0733-9445(1990)116:1(198).
  • [13] A. Pipinato, C. Pellegrino, O.S. Bursi, C. Modena„ “High-cycle Fatigue Behavior of Riveted Connections for Railway Metal Bridges”. Journal of Constructional Steel Research, vol. 65, no. 12, pp. 2167-2175, 2009. DOI: 10.1016/j.jcsr.2009.06.019.
  • [14] M. Al-Emrani, “Fatigue Performance of Stringer-to-Floor-Beam Connections in Riveted Railway Bridges”. J. Bridge Eng., vol. 10, no. 2, pp. 179-185, 2005, DOI: 10.1061/(ASCE)1084-0702(2005)10:2(179).
  • [15] Y. Zhou, “Assessment of Bridge Remaining Fatigue Life through Field Strain Measurement”. Journal of Bridge Engineering, vol. 11, no. 6, November 2006, DOI: 10.1061/(ASCE)10840702(2006)11:6(737).
  • [16] P.M. Kunz and M.A. Hirt, “Evaluation of the Remaining Fatigue Life of Steel Bridges”. Fourth International Conference on Short and Medium Span Bridges, pp. 1219-1230. Halifax, Nova Scotia, Canada. 1994.
  • [17] E. Brühwiler and P. Kunz, “Remaining Fatigue Life of a Riveted Railway Bridge”. Proc. IABSE Colloquium: Remaining Structural Capacity, pp. 375-383. Copenhagen, Denmark. 1993.
  • [18] D.H. Tobias and D.A. Foutch, “Reliability-Based Method for Fatigue Evaluation of Railway Bridges”. Journal of Bridge Engineering, vol. 2, no. 2, pp. 53-60, 1997, DOI: 10.1061/(ASCE)1084-0702(1997)2:2(53).
  • [19] B. Imam, T.D. Righiniotis, and M.K. Chryssanthopoulos, “Fatigue Assessment of Riveted Railway Bridges”. International Journal Steel Structures (KSSC), vol. 5, no.5, pp. 485-494, 2005.
  • [20] B. Imam, et al.,“Analytical Fatigue Assessment of a Typical Riveted UK Rail Bridge”. Proceedings of the Institution of Civil Engineers (ICE) - Bridge Engineering, vol. 159, no.3, pp. 105-116, 2006, DOI: 10.1680/bren.2006.159.3.105.
  • [21] B.M., Imam, T.D. Righiniotis, and M.K. Chryssanthopoulos, “Numerical Modeling of Riveted Railway Bridge Connections for Fatigue Evaluation”. Engineering Structures, vol. 29, no. 11, pp. 3071-3081, 2007, DOI: 10.1016/j.engstruct.2007.02.011.
  • [22] B.M., Imam, T.D. Righiniotis, and M.K. Chryssanthopoulos, “Probabilistic Fatigue Evaluation of Riveted Railway Bridges”. Journal of Bridge Engineering (ASCE), vol. 13 no. 3, pp. 237-244, 2008, DOI: 10.1061/(ASCE)1084-0702(2008)13:3(237).
  • [23] M.D., Bowman, et al., “Fatigue Evaluation of Steel Bridges”. NCHRP Report 721, Transportation Research Board, Washington D.C., USA. 2012, DOI: 10.17226/22774.
  • [24] E. Brühwiler, “Extending the Fatigue Life of Riveted Bridges Using Data From Long-Term Monitoring”. Advanced Steel Construction, vol. 11, pp. 283-293, 2015, DOI: 10.18057/IJASC.2015.11.3.3.
  • [25] M. Treacy and E. Brühwiler, “Fatigue Loading Estimation for Road Bridges Using Long Term WIM Monitoring”. Advances in Safety, Reliability and Risk Management - Proceedings of the European Safety and Reliability Conference, ESREL 2011, Troyes, France, 2011.
  • [26] M. Kużawa, T. Kamiński, J. Bień, “Fatigue Assessment Procedure for Old Riveted Road Bridges”. Archives of Civil and Mechanical Engineering, vol. 18, pp.1259-1274, 2018, DOI: 10.1016/j.acme.2018.03.005.
  • [27] K.A. Flanigan, J.P. Lynch, and M. Ettouney “Probabilistic Fatigue Assessment of Monitored Railroad Bridge Components Using Long-Term Response Data in A Reliability Framework”. Structural Health Monitoring vol. 19, no. 6, pp. 2122-2142, 2020, DOI: 10.1177/1475921720915712.
  • [28] B. Akesson, “Fatigue Life of Riveted Steel Bridges”. CRC Press/Balkema, London, 2010.
  • [29] C. Cremona, et al., “Improved Assessment Methods for Static and Fatigue Resistance of Old Metallic Railway Bridges”. Journal of Bridge Engineering, ASCE, November 2013, DOI: 10.1061/(ASCE)BE.1943-5592.0000466.
  • [30] A.L.L., Silva et al., “Fatigue Strength Assessment of Riveted Details in Railway Metallic Bridges”. Engineering Failure Analysis, vol. 121, 2021, DOI: 10.1016/j.engfailanal.2020.105120.
  • [31] B. Pedrosa et al., “Reliability of Fatigue Strength Curves for Riveted Connections Using Normal and Weibull Distribution Functions”. ASCE-ASME J. Risk Uncertain Eng.. Syst Part A Civ Eng., vol. 6, 2020, DOI: 10.1061/AJRUA6.0001081.
  • [32] American Association of State Highway and Transportation Officials (AASHTO) 2017. Load and Resistance Factor Design (LRFD). Bridge Design Specification, 8th Edition.
  • [33] J.W. Fisher, G.L. Kulak, and I.F.C. Smith, “A Fatigue Primer for Structural Engineers”. National Steel Bridge Alliance, 1998. https://www.aisc.org/globalassets/nsba/technical-documents/a-fatigure-primer-for-struc tural-engineers.pdf.
  • [34] Comité Européen de Normalisation, EN 1993-1-9, 2005. Design of Steel Structures, Part 1-9: Fatigue, European Committee for Standardization.
  • [35] A.M. Rakoczy and D. Otter, “Highlights of Railway Bridge Research and Testing by TTCI”. 64th Scientific Conference Krynica Zdrój, Poland, 16-20.09.2018.
  • [36] A.M. Rakoczy and D. Otter, “Can 100-year-old Steel Railroad Bridges Continue To Be Used In Service?”. IABSE Congress, New York City, N.Y., September 2019.
  • [37] A.M. Rakoczy, A. S. Nowak, and S. Dick, “Fatigue Reliability Model for Steel Railway Bridges”. Structure and Infrastructure Engineering, Maintenance, Management, Life-Cycle Design, and Performance, vol. 12, no.12, pp. 1602-1613, 2016, DOI: 10.1080/15732479.2016.1153664.
  • [38] C.A. Cornell, “Bounds on the Reliability of Structural Systems”. Journal of Structural Division, ASCE, vol. 93, no. 1, pp. 171-200, 1967, DOI: 10.1061/JSDEAG.0001577.
  • [39] A.M. Rakoczy and A.S. Nowak, “Reliability-Based Strength Limit State for Steel Railway Bridge”. Structure and Infrastructure Engineering, published online, pp. 1-14, September 2013, DOI: 10.1080/15732479.2013.807291.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c7389e7-f3df-40db-b156-4f1e9218c042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.