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Abstract

In recent years, many studies have attempted to use deep learning for moving object detec-
tion. Some research also combines object detection methods with traditional background
modeling. However, this approach may run into some problems with parameter settings
and weight imbalances. In order to solve the aforementioned problems, this paper pro-
poses a new way to combine ViBe and Faster-RCNN for moving object detection. To be
more specific, our approach is to confine the candidate boxes to only retain the area con-
taining moving objects through traditional background modeling. Furthermore, in order
to make the detection able to more accurately filter out the static object, the probability of
each region proposal then being retained. In this paper, we compare four famous methods,
namely GMM and ViBe for the traditional methods, and DeepBS and SFEN for the deep
learning-based methods. The result of the experiment shows that the proposed method
has the best overall performance score among all methods. The proposed method is also
robust to the dynamic background and environmental changes and is able to separate sta-
tionary objects from moving objects. Especially the overall F-measure with the CDNET
2014 dataset (like in the dynamic background and intermittent object motion cases) was
0,8572.
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1 Introduction

Object detection and classification are two es-
sential tasks in many applications [1, 2, 3, 4]. Es-
pecially in intelligent transportation system and
surveillance challenges, moving object detection
can be regarded as fundamental and important re-
search field. A robust and real-time moving object
detection algorithm is essential for video surveil-
lance [5], anomaly event detection [6], and object
tracking [7]. However, developing reliable mov-
ing object detection is challenging due to many
factors, one of which is a cluttered background.
The most straightforward approach to deal with the
background is subtracting the input image from the
model, and pixels with different values exceeding
a threshold are classified as foreground. Back-
ground subtraction approach is suitable for static or
slow varying backgrounds, which in reality, scene
backgrounds are complex and non-static due to
illumination changes, shadow, or dynamic back-
ground objects such as swaying leaves and water
waves. Gaussian Mixture Model (GMM) [8] and
Visual Background Extractor (ViBe) [9] are well-
known methods for creating and maintaining adap-
tive background models. In GMM, multiple Gaus-
sian distributions are used at each pixel location to
model the change in background colors. If a new
input pixel fits any of the Gaussian distributions, it
is considered a background pixel. Otherwise, it is
classified as a foreground pixel. Meanwhile, ViBe
aggregates a set of previously observed pixel val-
ues to build the background model and then uses
the distances between an input pixel and the sam-
ples in the model to determine moving objects. The
samples in the model are randomly replaced with
new background pixels so that the model can adapt
to background changes. Nevertheless, when deal-
ing with complex background environments, tradi-
tional background modeling approaches often mis-
classify dynamic background objects such as mov-
ing trees and produce fragmented segmentation re-
sults, as shown in Figure 1a and 1b.

Recently, there are various studies that have
proposed deep-learning-based approaches for mov-
ing object detection using Convolutional Neural
Networks (CNN). Some researchers treated back-
ground modeling as an image restoration task
[10, 11, 12]. Besides, various methods have
been proposed in order to incorporate traditional

background modeling methods with deep-learning-
based approaches [13, 14, 15, 16, 17]. In ad-
dition, some methods, for example, [18], have
been utilized to solve the image segmentation prob-
lem. Current approaches, whether traditional back-
ground modeling or deep learning-based, produce a
binary segmentation mask with white pixels repre-
senting moving foreground objects and black pix-
els indicating the background. These approaches
do not provide information regarding the number of
moving objects detected in the image and the cate-
gory of each of the moving objects. Such informa-
tion is essential for subsequence processing steps in
video surveillance systems.

Figure 1. Challenges encountered in traditional
background modeling methods. (a) Original image

(b) Result generated by traditional background
modeling. In (b), the algorithm mistakenly

classified the swaying leaves on the right side of
the image as moving targets and produced

fragmented segmentation results for the car and
pedestrians on the left.

Well-known object detection methods, such as
the two-stage region-based R-CNN series detectors
[3], and the single-stage Yolo [1] and SSD [4] de-
tectors, are able to detect and recognize objects in
an image with high accuracy. However, these detec-
tors cannot distinguish whether the detected objects
are stationary or moving. Therefore, existing object
detection models cannot be used directly for mov-
ing object detection.

In order to address the issues raised, this study
proposes a new method for moving object detec-
tion and recognition for video surveillance by com-
bining the object detection model with a tradi-
tional background modeling method. The proposed
method first uses ViBe to identify potential regions
of moving objects, and then applies Faster-R-CNN
[3] to detect and classify moving objects in the pro-
posed regions. Restricting object detection in re-
gions of moving objects ensures that the detected
objects are not stationary. Meanwhile, incorporat-
ing an object detection model in segmenting mov-
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classified as a foreground pixel. Meanwhile, ViBe
aggregates a set of previously observed pixel values
to build the background model and then uses the dis-
tances between an input pixel and the samples in the
model to determine moving objects. The samples
in the model are randomly replaced with new back-
ground pixels so that the model can adapt to back-
ground changes. Nevertheless, when dealing with
complex background environments, traditional back-
ground modeling approaches often misclassify dy-
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Figure 1: Challenges encountered in traditional
background modeling methods. (a) Original image
(b) Result generated by traditional background mod-
eling. In (b), the algorithm mistakenly classified the
swaying leaves on the right side of the image as mov-
ing targets and produced fragmented segmentation
results for the car and pedestrians on the left.

produce fragmented segmentation results, as shown
in Figure 1a and 1b.

Recently, there are various studies that have pro-
posed deep-learning-based approaches for moving
object detection using Convolutional Neural Net-
works (CNN). Some researchers treated background
modeling as an image restoration task [10], [11],
[12]. Besides, various methods have been proposed
in order to incorporate traditional background mod-
eling methods with deep-learning-based approaches
[13, 14, 15, 16, 17]. In addition, some methods, for
example, [18], have been utilized to solve the image
segmentation problem. Current approaches, whether
traditional background modeling or deep learning-
based, produce a binary segmentation mask with
white pixels representing moving foreground objects
and black pixels indicating the background. These
approaches do not provide information regarding the
number of moving objects detected in the image and
the category of each of the moving objects. Such
information is essential for subsequence processing
steps in video surveillance systems.

Well-known object detection methods, such as the
two-stage region-based R-CNN series detectors [3],
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ing objects will improve the overall segmentation
accuracy. In object detection, adjacent pixels that
conform to the same object are processed as a whole
instead of treating each pixel independently. As
a result, noise caused by dynamic background can
be eliminated and fragmented segmentation of large
objects can also be avoided.

In conclusion, the contributions of this paper are
as follows:

– We proposed a new method that combines the
strengths of a deep learning-based object detec-
tion model and traditional background modeling
for moving object detection.

– Our method is able to output the number of mov-
ing objects detected in the image and the cate-
gory of each of the moving objects.

– The proposed method is robust to the dynamic
background and environmental changes and is
able to separate stationary objects from moving
objects.

The rest of the paper is organized as follows: In
Section 2, related works are reviewed and dis-
cussed. In Section 3, the proposed method is de-
scribed in details. Section 4 presents the experi-
ments and a discussion of the results. Finally, the
main conclusions of the paper are summarized in
Section 5.

2 Related Work

In this section, we briefly review existing tra-
ditional and deep learning-based moving object de-
tection approaches related to this study and their re-
spective challenges.

2.1 Moving objects with Background
Restoration via traditional approach

One approach toward moving object detection
is to treat background modeling as an image restora-
tion task [10, 11, 12]. First, optical flow or tradi-
tional background modeling methods are used to
mark areas in an image that may contain moving
objects. These areas are then masked out from the
image, and a deep neural network such as an au-
toencoder or GAN is trained to restore the masked
background areas for the image. In other words,

the network learns to repair and generate the back-
ground image after the moving foreground objects
are removed. As shown in Figure 2a, the car is
detected as a moving object by optical flow, and
the area containing the car in the original image
is masked out. Next, the masked image is in-
put into the network to predict the background at
the masked areas. Finally, the reconstructed back-
ground image will be used to compare with the orig-
inal image to achieve moving object detection. The
main challenge faced by this approach is that when
the area covering the moving object is too large,
this will cause the features available in the image
too few to make a good prediction for the large
masked area, thus detrimental to the detection per-
formance. Another situation is that when the back-
ground is too complex to predict, the reconstructed
background image might be incorrect and therefore
causing false detection.

Figure 2. Architectural overview of various deep
learning-based moving object detection

approaches. (a) Background restoration, (b)
Foreground background segmentation, (c) Mixing

traditional background modeling with deep
learning.

(a)

(b)

(c)
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2.2 Moving object detection with Fore-
ground Background Segmentation via
deep learning method

Another line of work considers moving ob-
ject detection as a binary image classification task
where each pixel value is classified as foreground
or background [16, 17, 18]. The original image
is first input into an auto-encoder to extract the
spatial features of the image. This stage is called
the semantic feature extraction network (SFEN) in
[16]. However, using only spatial features does
not describe the temporality of the image. That
is, a feature extraction network does not distin-
guish whether a segmented foreground object is
static or in motion. To resolve this issue, recur-
sive neural networks [16, 17], 3D-CNN [18], or
kernel-induced possibilistic fuzzy associated BGS
[19] are employed to model the temporal context
of an image sequence. The induced kernel func-
tion in [19] is used to project low-dimensional data
into higher-dimensional space and construct a ro-
bust background model based on the density of data
in the temporal domain, avoiding noisy and out-
lier points. In [16], a convLSTM is used to extract
the temporal features after the feature extraction
network, and it is named the pixel-level sequence
learning network (PSL). In PSL, current spatial fea-
tures extracted via SFEN are input into convLSTM
together with previously extracted features to pre-
dict a result, as shown in Figure 2b. Some post-
processing such as conditional random fields (CRF)
is performed to refine the boundary of the seg-
mentation result and produce the final output. It
is demonstrated that including temporality context
greatly improves the segmentation accuracy of the
model. The major drawback of explicitly modeling
the temporal context is the long processing time,
where the FPS is usually dropped below 10, and
thus cannot be applied in a real-time setting. The
Arithmetic Distribution Neural Network [20] was
used to introduce another approach for learning the
distribution of temporal pixels. They [20] used a
Bayesian refinement model based on neighboring
information and a graphics processing unit (GPU)
to improve the model’s robustness and accuracy.

2.3 Mixing Traditional with Deep Learn-
ing Methods

Combining traditional background modeling
with deep learning methods is another common ap-
proach for moving object detection [13, 14, 15].
In this approach, a background model is first es-
tablished using the traditional background model-
ing method. Next, a CNN is trained to perform
background subtraction on the input image. Next,
the original input image and the background model
generated by the traditional method are concate-
nated and input to the neural network, and the neu-
ral network learns the differences between the in-
put image and the background model and outputs
the binary segmentation map, as shown in Figure
2c. For instance, deepBS [13] uses a temporal me-
dian operator to obtain the background model from
n video frames. Next, a scene-specific CNN is
trained on image patches extracted around a pixel
from the input image, and from the corresponding
background model and ground truth. These patches
are concatenated and input to a shallow network,
and the network will output a prediction indicat-
ing if the pixel is foreground or background. The
main challenge with this approach is that the perfor-
mance of the network prediction is affected by the
effectiveness of the traditional background model-
ing. Another problem is that patch-based segmen-
tation requires significant processing time.

In this study, we propose a new way to com-
bine traditional background modeling with a deep
learning-based object detection method to detect
and classify moving objects in video surveillance.
Through traditional background modeling, the pro-
posed method first identifies potential regions of
moving foreground objects and then applies a deep
learning-based object detector to detect and classify
moving objects in the regions. Our method is not
only robust to the dynamic background and envi-
ronmental changes; it is also capable of identifying
the types of moving objects which is important for
video surveillance systems.

3 Method

An overview of the architecture of the proposed
model is shown in Figure 3. The input image
is fed concurrently into two separate channels in
the model. In the first channel, the image is pre-
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processed using ViBe [9] to detect moving fore-
ground regions in the image. After that, a region
proposal placement scheme is used to determine
potential locations in the detected regions that are
most likely to contain moving objects. In the mean-
time, in the second channel, the original input im-
age is fed into a CNN to extract the feature map and
then to the region proposal network (RPN) of Faster
R-CNN [3] which generates region proposals for
locations in the image that might contain objects.
Next, the output of ViBe is used to filter out false re-
gion proposals proposed by the RPN that are not in
the moving regions. Finally, the remaining regions’
proposals are input into a classification network to
classify the types of detected moving objects. The
following sections give details of each of the pro-
cessing steps.

Figure 3. Overall architecture of the proposed
model

3.1 Moving Foreground Detection with
ViBe

ViBe [9] is a robust and commonly used pixel-
wise background modeling algorithm for moving
foreground detection. ViBe’s result is a binary
image with 1 indicating a moving object region
and 0 indicating a background region. ViBe is
highly efficient and produces satisfactory results.
However, when dealing with complex and dynamic
scenes, ViBe often produces fragmented segmenta-
tion results and misclassifies dynamic background
objects, as shown in Figure 1. As a result, after
foreground detection with ViBe, we applied mor-
phological operations to remove the noise in the
segmentation image. As shown in Figure 4, after
three iterations of dilation, most holes are filled and
broken fragments are re-connected, such as the car
object on the left of the image. Then, followed
by three iterations of erosion, noises smaller than
the structural elements are filtered out and the ex-

tra boundaries caused by dilation are reduced, as
shown in the bottom row of Figure 4. Finally, con-
nected components with a number of pixels less
than a threshold value of 200 are removed. There
are still some noisy dynamic background objects
that are not cleaned after the morphological pro-
cessing step and they will be handled subsequently
by the object detection network.

Figure 4. Overall architecture of the proposed
model

3.2 Region Proposal Placement Scheme

The foreground segmentation result generated
by ViBe will be used as a mask for guiding the ob-
ject detector where to detect moving objects. The
connected-component algorithm is first applied to
the output of ViBe to demarcate moving objects.
Note that the output of ViBe usually contains not
only potential moving objects but also false detec-
tion such as the dynamic background. Therefore,
performing object detection and classification on
the output of ViBe can help determine which de-
tected foreground regions are actually objects, and
which are noise or dynamic backgrounds.

As mentioned earlier, Faster R-CNN, a popular
two-stage object detector, will be used here to de-
tect objects and classify objects in an image (will
be discussed in a subsequent subsection). In the
first stage, Faster R-CNN uses a region proposal
network (RPN) to generate region proposals for lo-
cations in the image that might contain objects. In
the second stage, the region proposals are passed
to a classification network to determine whether the
region actually contains an object, the object type,
as well as parameters to refine the region shape to
best fit the object. RPN usually produces a large
number of region proposals and cannot distinguish
whether the objects are stationary or moving. This
is exactly the reason why we proposed to use the
result of ViBe to guide the object detector to focus
only on moving objects.
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Figure 5. Different neighbor settings for region proposal placement scheme. (a) Two neighbors, (b) Four
neighbors (0 degrees), (c) Four neighbors (45 degrees), (d) Eight neighbors.

However, not all pixel locations within a de-
tected foreground region are good candidates for a
potential object center position. For example, pixel
locations near the centroid of the foreground region
are more likely to be the object center, while pixel
locations near the edges of the region are less likely.
Based on this observation, we proposed a novel re-
gion proposal placement scheme to help select re-
gion proposals proposed by the RPN and to filter
out unrelated proposals. Firstly, for each connected
component, the minimum volume enclosing the el-
lipsoid (MVEE) is calculated and the major axis and
minor axis of the ellipse are obtained. The idea is to
select region proposals along or near the major axis.
Secondly, large objects require longer intervals be-
tween proposals to avoid dense placement. On the
contrary, if a connected component contains mul-
tiple small overlapping moving objects, it should
have a shorter interval between region proposals.
The interval can be determined by the semi-minor
axis length of MVEE.

There are several possible ways to select the
placement scheme on a connected foreground re-
gion. Figure 5 shows four different placement set-
tings based on two neighbors, four neighbors, and
eight neighbors. Our experimental results show
that the setting with four neighbors with 0 degrees
achieves the best performance. Therefore, unless
otherwise stated, four neighbors with 0 degrees set-
ting is used throughout the paper.

3.3 Region Proposal Selection

For an input image, the RPN of Faster R-CNN
[3] generates a feature map which predicts objects
in the image, known as region proposals. A high
value at a pixel location in the feature map indicates
a high probability of containing an object. The first

step to filter out stationary object predictions is by
performing an AND operation between RPN fea-
ture map and ViBe’s result.

The result of an AND operation contains sev-
eral positive outcomes. First, stationary objects in
the image will be masked out by ViBe’s result while
moving objects will be retained. Secondly, if an en-
tity in the image is not the target object, the prob-
ability of containing an object is low, and therefore
the value in the feature map will be small. Even
if ViBe’s result falsely detected it as a foreground,
for instance, a dynamic background due to a wa-
ter wave or waving tree, the low feature value from
RPN will prevent it from being classified as a mov-
ing object. Thirdly, incomplete or fragmented seg-
mentation of moving objects in ViBe’s result due to
noise can be recovered since RPN should produce
a high probability value at the corresponding posi-
tion.

After the AND operation between the RPN fea-
ture map and ViBe’s results, we will select the top
K candidate region proposals based on the input to
the second stage for object classification and bound-
ing box regression. One straightforward approach is
to choose region proposals based on the probability
values of the feature map. However, there are two
issues with such an approach. First, as discussed in
the previous section, region proposals near the ma-
jor axis of a foreground region are more likely to
enclose the object. Thus, the relative position of a
region proposal is also an important factor for se-
lection consideration. Secondly, it has been shown
that one can fool a deep learning-based object de-
tector by carefully altering a small part of an image.
This can become a serious security issue in video
surveillance. However, such an alteration will not
affect the result of ViBe. As such, the proposed re-
gion proposal placement scheme discussed in the

(a) (b) (c) (d)
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Figure 5. Different neighbor settings for region proposal placement scheme. (a) Two neighbors, (b) Four
neighbors (0 degrees), (c) Four neighbors (45 degrees), (d) Eight neighbors.

However, not all pixel locations within a de-
tected foreground region are good candidates for a
potential object center position. For example, pixel
locations near the centroid of the foreground region
are more likely to be the object center, while pixel
locations near the edges of the region are less likely.
Based on this observation, we proposed a novel re-
gion proposal placement scheme to help select re-
gion proposals proposed by the RPN and to filter
out unrelated proposals. Firstly, for each connected
component, the minimum volume enclosing the el-
lipsoid (MVEE) is calculated and the major axis and
minor axis of the ellipse are obtained. The idea is to
select region proposals along or near the major axis.
Secondly, large objects require longer intervals be-
tween proposals to avoid dense placement. On the
contrary, if a connected component contains mul-
tiple small overlapping moving objects, it should
have a shorter interval between region proposals.
The interval can be determined by the semi-minor
axis length of MVEE.

There are several possible ways to select the
placement scheme on a connected foreground re-
gion. Figure 5 shows four different placement set-
tings based on two neighbors, four neighbors, and
eight neighbors. Our experimental results show
that the setting with four neighbors with 0 degrees
achieves the best performance. Therefore, unless
otherwise stated, four neighbors with 0 degrees set-
ting is used throughout the paper.

3.3 Region Proposal Selection

For an input image, the RPN of Faster R-CNN
[3] generates a feature map which predicts objects
in the image, known as region proposals. A high
value at a pixel location in the feature map indicates
a high probability of containing an object. The first

step to filter out stationary object predictions is by
performing an AND operation between RPN fea-
ture map and ViBe’s result.

The result of an AND operation contains sev-
eral positive outcomes. First, stationary objects in
the image will be masked out by ViBe’s result while
moving objects will be retained. Secondly, if an en-
tity in the image is not the target object, the prob-
ability of containing an object is low, and therefore
the value in the feature map will be small. Even
if ViBe’s result falsely detected it as a foreground,
for instance, a dynamic background due to a wa-
ter wave or waving tree, the low feature value from
RPN will prevent it from being classified as a mov-
ing object. Thirdly, incomplete or fragmented seg-
mentation of moving objects in ViBe’s result due to
noise can be recovered since RPN should produce
a high probability value at the corresponding posi-
tion.

After the AND operation between the RPN fea-
ture map and ViBe’s results, we will select the top
K candidate region proposals based on the input to
the second stage for object classification and bound-
ing box regression. One straightforward approach is
to choose region proposals based on the probability
values of the feature map. However, there are two
issues with such an approach. First, as discussed in
the previous section, region proposals near the ma-
jor axis of a foreground region are more likely to
enclose the object. Thus, the relative position of a
region proposal is also an important factor for se-
lection consideration. Secondly, it has been shown
that one can fool a deep learning-based object de-
tector by carefully altering a small part of an image.
This can become a serious security issue in video
surveillance. However, such an alteration will not
affect the result of ViBe. As such, the proposed re-
gion proposal placement scheme discussed in the
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previous section will be used to assist region pro-
posal selection and thus avoid such a security issue.

In summary, the top K candidate region propos-
als are selected based on the probability values of
the feature map and the position of a region related
to the region proposal placement scheme. If the
number of proposals is less than K, then only the
non-zero candidate proposals are selected and sent
to the second stage. K is set at 300 in this paper.
Figure 6 shows an example of the proposed region
proposal selection scheme. As seen in Figure 6,
stationary objects (two cars in the upper middle)
are filtered out by ViBe. The dynamic background
noise (waving tree in upper right) in the Vibe result
images has a very low probability value in the fea-
ture map (6b) and is eliminated. So it will also be
filtered out. The example shows that the proposed
region proposal selection method can successfully
achieve the purpose of moving object detection.

Figure 6. Example of region proposal selection.
(a) Original image (b) RPN feature map (c) Vibe

result (d) Moving object detection result after
region proposal selection.

3.4 Object Detection Details

In this paper, Faster R-CNN [3] object detec-
tor is used for moving object detection and classi-
fication. ResNet-50 [17] with FPN [18] were used
as the backbone network to extract spatial features
from the input image. Figure 7 shows the architec-
ture of our backbone network. ResNet can be di-
vided into five parts, including conv1 x, conv2 x,
conv3 x, conv4 x, and conv5 x. Multiple bottle-

necks are used in ResNet with each bottleneck con-
taining three convolution layers. The first layer is
a 1x1 convolution to reduce the dimension of fea-
ture maps’ depth channel. Next is a 3x3 convolution
layer. And finally, another 1x1 convolution layer to
expand the depth dimension. The goal of bottle-
necks is to reduce the total number of parameters
in the network. The conv2 x to conv5 x layers con-
tain 3, 4, 6, and 3 bottlenecks, respectively. The five
parts correspond to C1 to C5 in Figure 7.

Figure 7. Architecture of the object detector
backbone network.

In addition to the general ResNet network, we
also use the Feature Pyramid Network (FPN). The
purpose of the feature pyramid is to improve the
detection accuracy of different object scales, es-
pecially for small objects. Some approaches di-
rectly resize the original image into several differ-
ent scales and input the rescaled images into dif-
ferent convolutional neural networks to extract fea-
tures. Finally, predictions are made on the differ-
ent feature maps. However, input rescaled images
to multiple convolutional neural networks increased
the overall processing time. In CNN, the deep net-
works can extract richer semantic information and
it is more suitable for detecting large objects. On
the other hand, shallow networks have more loca-
tion information and are suitable for detecting small
objects. In FPN, instead of resizing the image be-
fore the network, information on the deep and shal-
low feature maps is merged together to improve de-
tection accuracy. More detailed information on the
backbone network is shown in Table 1. In the be-
ginning, the original input image is passed through
a five-stage convolution that generates feature maps
C1, C2, C3, C4, and C5, respectively. The feature
maps extracted by the backbone network are fur-

(a) (b)

(c) (d)
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ther convolved with a 1x1x256 convolution which
reshapes all the feature maps to 256 channels. Next,
the feature maps are up-sampled and added to the
previous feature map and produce intermediate fea-
ture maps M2, M3, M4, and M5, which fuse deep
information together with shallow information. Fi-
nally, the intermediate feature maps are convolved
with a 3x3 convolution to get the final feature maps.
As shown in Figure 7 and Table 1, after the back-
bone network, we obtained five feature maps P2 to
P6 in which shallow and deep information are com-
bined.

3.5 Model Training and Testing Output

During the training phase, we use the training
images to train an original two-stage object detec-
tion network to detect the target objects without us-
ing the ViBe results. The results output at this phase
does not recognize an object’s motion state. During
the testing phase, the proposed moving object de-
tection framework will incorporate ViBe results in
the RPN to filter out stationary objects and output
the detected moving objects.

Note that compared to existing moving object
detection methods, which output only a binary seg-
mentation mask of moving foreground objects, our
method additionally outputs an object’s category
and its associated bounding box. It is straightfor-
ward to simultaneously output a pixel-level seg-
mentation mask for each detected object. To this
end, we adopted the Mask R-CNN [21] approach,
which extends Faster R-CNN by adding a branch
for predicting an object mask in parallel with the ex-
isting branch for bounding box recognition. In the
experiments described below, Mask R-CNN will be
used in our model to generate the binary segmenta-
tion mask.

3.6 Dataset and Evaluation Metrics

In literature, CDNET 2014 is one of the most
comprehensive change detection dataset that is pro-
vided publicly. This dataset provides the evalu-
ation of state-of-the-art approaches, not only un-
supervised, but also supervised methods (which
mostly involving deep learning approach). The
CDNET [22] background subtraction benchmark
dataset was used in this study to evaluate the pro-
posed method. The CDNET dataset contains videos

in 11 categories that represent different challenges
that may be encountered in moving object detec-
tion. Since the main objective of this study is to im-
prove original object detection methods so that an
object’s motion state can be recognized, they can be
used for effective moving object detection in video
surveillance. As such, we have selected the Dy-
namic Background and Intermittent Object Motion
categories for evaluation purposes. Each category
contains 6 video sequences.

The performance metrics used in this study to
evaluate the proposed method are Precision, Recall,
and F-measure, define as:

Precision =
T P

T P+FP
(1)

Recall =
T P

T P+FN
(2)

F −Measure =
2×Precision×Recall

Precision+Recall
(3)

where TP refers to a true positive, the number of
foreground pixels that are correctly classified as
foreground and FP is a false positive, which is the
number of background pixels that are incorrectly
classified as foreground. FN denotes a false neg-
ative, the number of foreground pixels that are mis-
classified as background.
3.7 Implementation Details

After performing data preprocessing, such as
removing video sequences that do not have corre-
sponding ground truth, the dataset is divided into a
50% training set and a 50% test set. The training
set is used to train the object detector. Since most
images in a video sequence are similar and highly
correlated, to avoid data redundancy, we sample the
images in a video sequence with a fixed time inter-
val. In the end, about 50 images per video were se-
lected for training. The weights of the object detec-
tor were pre-trained using the COCO dataset [23].
In many experiments, the pre-trained network can
be used directly without the need to retrain it using
training data. In cases where the target object cate-
gory is not covered in the COCO dataset, we retrain
the object detection network with the training set.

Two traditional methods, GMM [8] and ViBe
[9], were selected for comparison with the proposed
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ther convolved with a 1x1x256 convolution which
reshapes all the feature maps to 256 channels. Next,
the feature maps are up-sampled and added to the
previous feature map and produce intermediate fea-
ture maps M2, M3, M4, and M5, which fuse deep
information together with shallow information. Fi-
nally, the intermediate feature maps are convolved
with a 3x3 convolution to get the final feature maps.
As shown in Figure 7 and Table 1, after the back-
bone network, we obtained five feature maps P2 to
P6 in which shallow and deep information are com-
bined.

3.5 Model Training and Testing Output

During the training phase, we use the training
images to train an original two-stage object detec-
tion network to detect the target objects without us-
ing the ViBe results. The results output at this phase
does not recognize an object’s motion state. During
the testing phase, the proposed moving object de-
tection framework will incorporate ViBe results in
the RPN to filter out stationary objects and output
the detected moving objects.

Note that compared to existing moving object
detection methods, which output only a binary seg-
mentation mask of moving foreground objects, our
method additionally outputs an object’s category
and its associated bounding box. It is straightfor-
ward to simultaneously output a pixel-level seg-
mentation mask for each detected object. To this
end, we adopted the Mask R-CNN [21] approach,
which extends Faster R-CNN by adding a branch
for predicting an object mask in parallel with the ex-
isting branch for bounding box recognition. In the
experiments described below, Mask R-CNN will be
used in our model to generate the binary segmenta-
tion mask.

3.6 Dataset and Evaluation Metrics

In literature, CDNET 2014 is one of the most
comprehensive change detection dataset that is pro-
vided publicly. This dataset provides the evalu-
ation of state-of-the-art approaches, not only un-
supervised, but also supervised methods (which
mostly involving deep learning approach). The
CDNET [22] background subtraction benchmark
dataset was used in this study to evaluate the pro-
posed method. The CDNET dataset contains videos

in 11 categories that represent different challenges
that may be encountered in moving object detec-
tion. Since the main objective of this study is to im-
prove original object detection methods so that an
object’s motion state can be recognized, they can be
used for effective moving object detection in video
surveillance. As such, we have selected the Dy-
namic Background and Intermittent Object Motion
categories for evaluation purposes. Each category
contains 6 video sequences.

The performance metrics used in this study to
evaluate the proposed method are Precision, Recall,
and F-measure, define as:

Precision =
T P

T P+FP
(1)

Recall =
T P

T P+FN
(2)

F −Measure =
2×Precision×Recall

Precision+Recall
(3)

where TP refers to a true positive, the number of
foreground pixels that are correctly classified as
foreground and FP is a false positive, which is the
number of background pixels that are incorrectly
classified as foreground. FN denotes a false neg-
ative, the number of foreground pixels that are mis-
classified as background.
3.7 Implementation Details

After performing data preprocessing, such as
removing video sequences that do not have corre-
sponding ground truth, the dataset is divided into a
50% training set and a 50% test set. The training
set is used to train the object detector. Since most
images in a video sequence are similar and highly
correlated, to avoid data redundancy, we sample the
images in a video sequence with a fixed time inter-
val. In the end, about 50 images per video were se-
lected for training. The weights of the object detec-
tor were pre-trained using the COCO dataset [23].
In many experiments, the pre-trained network can
be used directly without the need to retrain it using
training data. In cases where the target object cate-
gory is not covered in the COCO dataset, we retrain
the object detection network with the training set.

Two traditional methods, GMM [8] and ViBe
[9], were selected for comparison with the proposed
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Table 1. Detailed information of the object detector backbone network.

Table 2. F-measure comparisons of different methods on the CDNET dataset. Bold entries indicate the
best result in the given column.

Method Dynamic Background Intermittent ObjectMotion Overall
GMM 0.2024 0.3332 0.2678
ViBe 0.3796 0.5409 0.4602
SFEN(Vgg) 0.6030 0.5775 0.5902
SFEN(Vgg)+CRF 0.6207 0.6058 0.6132
SFEN(Vgg)+PSL+CRF 0.7538 0.6175 0.6856
SFEN(ResNet)+PSL+CRF 0.8220 0.8453 0.8336
DeepBS 0.8761 0.6098 0.7429
Proposed method 0.8521 0.8624 0.8572
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method. GMM is written in MATLAB, and ViBE is
written in the C programming language. Two deep
learning-based methods, DeepBS [11] and SFEN
[13], are also included here for comparison. The
results of the two methods are extracted from their
respective papers.

4 Result and Discussion

The F-measure of five different methods on the
CDNET dataset is shown in Table 2. It can be seen
that our method has the best overall performance
among the five methods. There is a significant
improvement between the proposed method and
the traditional methods. Furthermore, when com-
pared to deep learning-based approaches, our meth-
ods’ F-measures are slightly lower than DeepBS
in the dynamic background category but substan-
tially higher in the intermittent object motion cat-
egory. The overall score of our method is 0.1143
points higher than DeepBS’s. Similarly, the pro-
posed method outperformed SFEN in terms of the
overall score. LSTM slows down the speed perfor-
mance of SFEN, which, despite being able to pro-
duce reasonably good segmentation results, drops
the processing speed to less than 10 fps [13]. SFEN
can reach about 33 fps without LSTM, but its F-
measure will drop to 0.6132. Figure 8 shows sam-
ple segmentation results of our method compared to
the two traditional methods. The proposed method
is able to maintain the integrity of the foreground
objects and is not sensitive to the dynamic back-
ground, as can be seen with the help of the object
detector.

Our model contains two components, the tra-
ditional background modeling algorithm ViBe and
the deep learning-based object detector. ViBe is ex-
ecuted on the CPU. The deep learning-based object
detector is performed on the GPU NVIDIA GTX
1080 ti. The size of the image has a significant im-
pact on processing speed. When the image size is
set to 320x240 for CDNET, real-time performance
can be achieved at about 34 fps. Processing speed
drops to 15 frames per second when 720x480 im-
ages are used.

4.1 Timing of Mixing ViBe Result

In the proposed model, ViBe results are incor-
porated with the results of the region proposal net-
work (RPN) before being sent to the classification
network. In this experiment, we investigate addi-
tional options for adding the ViBe result to the net-
work. In particular, we perform an AND operation
between the ViBe result and the original image be-
fore inputting it into the network for object detec-
tion. If a pixel is classified as background in ViBe,
the same pixel in the original image will be changed
to black. An example is shown in Figure 9a, where
all static pixels are set to black while foreground
pixels are unchanged. The object detection network
is then trained using the final image, which does not
contain any static background information.

For such a setup, we discover that the network
will learn the information around object edges.
Such information can mislead the network into mis-
classifying a static object as a moving object by
only observing the boundary of the object. An il-
lustration is shown in Figure 9a, where a stopped
car begins to move after the traffic light turns green.
Since the ViBe background model has not yet been
updated completely, a small portion of the car (e.g.,
the front end) is classified as moving foreground by
the ViBe at the location where the car was previ-
ously stopped. Because the object detection net-
work has been trained to detect objects based on
the boundary of an object, it will report that a car
object has been detected even though there is no car
at that location, as shown in Figure 9b. Therefore,
the experimental results suggest that ViBe’s results
should be incorporated into the RPN feature map
instead of the original image.

Figure 9. Example result of performing AND
operation between ViBe result and the original

image before inputting to the neural network for
object detection.

(a) (b)
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method. GMM is written in MATLAB, and ViBE is
written in the C programming language. Two deep
learning-based methods, DeepBS [11] and SFEN
[13], are also included here for comparison. The
results of the two methods are extracted from their
respective papers.

4 Result and Discussion

The F-measure of five different methods on the
CDNET dataset is shown in Table 2. It can be seen
that our method has the best overall performance
among the five methods. There is a significant
improvement between the proposed method and
the traditional methods. Furthermore, when com-
pared to deep learning-based approaches, our meth-
ods’ F-measures are slightly lower than DeepBS
in the dynamic background category but substan-
tially higher in the intermittent object motion cat-
egory. The overall score of our method is 0.1143
points higher than DeepBS’s. Similarly, the pro-
posed method outperformed SFEN in terms of the
overall score. LSTM slows down the speed perfor-
mance of SFEN, which, despite being able to pro-
duce reasonably good segmentation results, drops
the processing speed to less than 10 fps [13]. SFEN
can reach about 33 fps without LSTM, but its F-
measure will drop to 0.6132. Figure 8 shows sam-
ple segmentation results of our method compared to
the two traditional methods. The proposed method
is able to maintain the integrity of the foreground
objects and is not sensitive to the dynamic back-
ground, as can be seen with the help of the object
detector.

Our model contains two components, the tra-
ditional background modeling algorithm ViBe and
the deep learning-based object detector. ViBe is ex-
ecuted on the CPU. The deep learning-based object
detector is performed on the GPU NVIDIA GTX
1080 ti. The size of the image has a significant im-
pact on processing speed. When the image size is
set to 320x240 for CDNET, real-time performance
can be achieved at about 34 fps. Processing speed
drops to 15 frames per second when 720x480 im-
ages are used.

4.1 Timing of Mixing ViBe Result

In the proposed model, ViBe results are incor-
porated with the results of the region proposal net-
work (RPN) before being sent to the classification
network. In this experiment, we investigate addi-
tional options for adding the ViBe result to the net-
work. In particular, we perform an AND operation
between the ViBe result and the original image be-
fore inputting it into the network for object detec-
tion. If a pixel is classified as background in ViBe,
the same pixel in the original image will be changed
to black. An example is shown in Figure 9a, where
all static pixels are set to black while foreground
pixels are unchanged. The object detection network
is then trained using the final image, which does not
contain any static background information.

For such a setup, we discover that the network
will learn the information around object edges.
Such information can mislead the network into mis-
classifying a static object as a moving object by
only observing the boundary of the object. An il-
lustration is shown in Figure 9a, where a stopped
car begins to move after the traffic light turns green.
Since the ViBe background model has not yet been
updated completely, a small portion of the car (e.g.,
the front end) is classified as moving foreground by
the ViBe at the location where the car was previ-
ously stopped. Because the object detection net-
work has been trained to detect objects based on
the boundary of an object, it will report that a car
object has been detected even though there is no car
at that location, as shown in Figure 9b. Therefore,
the experimental results suggest that ViBe’s results
should be incorporated into the RPN feature map
instead of the original image.

Figure 9. Example result of performing AND
operation between ViBe result and the original

image before inputting to the neural network for
object detection.
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Figure 8. Segmentation results on the CDNET dataset. Starting from the first row is the original image,
followed by results of GMM, ViBe, the proposed method, and Ground-truth.

4.2 Failure Cases

Our model performs object detection within
moving foreground areas based on the ViBe re-
sult. False detection (false positive) can occur when
ViBE misclassifies a dynamic background as fore-
ground and there are static objects that overlap or
are near the misclassified area. When this occurs,
the object detector will detect static objects and
classify them as moving objects.

The quantitative findings from the six videos
in CDNET’s dynamic background category are dis-
played in Table 3. It can be seen that the perfor-
mance of the proposed method is much lower for
the fountain01 video compared with other videos.
Figure 10 displays a sample frame from the foun-
tain01 video along with the results of its detection.
It is visible that two parked cars overlap with the
fountain, and both cars are misclassified as mov-
ing objects. To avoid such failure cases, a more
carefully designed post-processing operation on the
ViBe result can be considered to reduce dynamic
background noise.

Table 3. Quantitative results of the videos in the
Dynamic Background category of CDNET.

Video Precision Recall F-measure
Boats 0.8818 0.9745 0.9258
Canoe 0.9816 0.9275 0.9538
Fall 0.8836 0.9097 0.8965
Fountain01 0.3707 0.7279 0.4912
Fountain02 0.9743 0.8055 0.8819
Overpass 0.9423 0.9851 0.9632

Figure 10. Failure cases happen when static
objects overlap with a dynamic background such

as fountains.

5 Conclusion

Moving object detection is an important compo-
nent in video surveillance and in general computer
vision applications. Traditional methods are of-
ten challenged by the establishment, updating, and
comparison of background models. Deep learning-
based approaches tackle some of the challenges, but
they are usually complex and are not suitable for
real-time video surveillance systems.

In this paper, we use the results of ViBe as guid-
ance to a Faster RCNN to perform object detec-
tion in areas that may contain moving objects. Our
method combines the strengths of deep learning-
based object detection models and traditional back-
ground modeling such that our method can out-
put the number of moving objects and their ob-
ject types, which is essential for video surveillance
systems. Experimental results show that the pro-
posed method works well under challenging dy-
namic backgrounds and changing conditions.

(a) (b)
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Figure 8. Segmentation results on the CDNET dataset. Starting from the first row is the original image,
followed by results of GMM, ViBe, the proposed method, and Ground-truth.

4.2 Failure Cases

Our model performs object detection within
moving foreground areas based on the ViBe re-
sult. False detection (false positive) can occur when
ViBE misclassifies a dynamic background as fore-
ground and there are static objects that overlap or
are near the misclassified area. When this occurs,
the object detector will detect static objects and
classify them as moving objects.

The quantitative findings from the six videos
in CDNET’s dynamic background category are dis-
played in Table 3. It can be seen that the perfor-
mance of the proposed method is much lower for
the fountain01 video compared with other videos.
Figure 10 displays a sample frame from the foun-
tain01 video along with the results of its detection.
It is visible that two parked cars overlap with the
fountain, and both cars are misclassified as mov-
ing objects. To avoid such failure cases, a more
carefully designed post-processing operation on the
ViBe result can be considered to reduce dynamic
background noise.

Table 3. Quantitative results of the videos in the
Dynamic Background category of CDNET.

Video Precision Recall F-measure
Boats 0.8818 0.9745 0.9258
Canoe 0.9816 0.9275 0.9538
Fall 0.8836 0.9097 0.8965
Fountain01 0.3707 0.7279 0.4912
Fountain02 0.9743 0.8055 0.8819
Overpass 0.9423 0.9851 0.9632

Figure 10. Failure cases happen when static
objects overlap with a dynamic background such

as fountains.

5 Conclusion

Moving object detection is an important compo-
nent in video surveillance and in general computer
vision applications. Traditional methods are of-
ten challenged by the establishment, updating, and
comparison of background models. Deep learning-
based approaches tackle some of the challenges, but
they are usually complex and are not suitable for
real-time video surveillance systems.

In this paper, we use the results of ViBe as guid-
ance to a Faster RCNN to perform object detec-
tion in areas that may contain moving objects. Our
method combines the strengths of deep learning-
based object detection models and traditional back-
ground modeling such that our method can out-
put the number of moving objects and their ob-
ject types, which is essential for video surveillance
systems. Experimental results show that the pro-
posed method works well under challenging dy-
namic backgrounds and changing conditions.

MOVING OBJECT DETECTION FOR. . .

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Per-
ona, D. Ramanan, P. Dollár, and C. L. Zitnick, Mi-
crosoft coco: Common objects in context, in Eu-

ropean conference on computer vision. Springer,
2014, pp. 740–755.


