PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Micro-seismic monitoring after the shipwreck of the Costa Concordia at Giglio Island (Italy)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A microseismic network was used for monitoring the wreck of the Costa Concordia cruise ship, wrecked and run agrounded along the Giglio Island coasts during the night of 13 January 2012, until its removal. The seismic traces were processed by means of real-time and “a posteriori” procedures to detect transients that could be ascribed to wreck movements on the sea bed to integrate this information in an early warning system for assessing the wreck stability. After a first discrimination of the transients using amplitude criteria we proceeded to the localization of the detected signals to focus the attention only on the transients originated in the shipwreck resting area. The results showed that most of the events localized on the wreck were likely related to human work activities or sudden internal brittle failure but not to displacements on the sea-floor. Instead, the displacements are associated to the impact on the vessel of great sea storms which approach were well correlated with the increasing seismic noise at low frequency. The carried out procedures based on this unique dataset represent an opportunity to test seismic monitoring techniques also in not usual engineering context to support emergency management activities.
Czasopismo
Rocznik
Strony
1019--1027
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Fondazione Parsec, Prato, Italy
autor
  • Fondazione Parsec, Prato, Italy
autor
  • Dipartimento di Scienze della Terra, Università di Firenze, Florence, Italy
  • Istituto Nazionale di Geofisica e Vulcanologia-Sezione di Pisa, Pisa, Italy
Bibliografia
  • 1. Alexander DE (2012) The ‘Titanic Syndrome’: risk and crisis management on the Costa Concordia. J Homel Secur Emerg Manag. doi: 10.1515/1547-7355.1998
  • 2. Battaglia J, Aki K (2003) Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. J Geophys Res 108(B8):2364. doi: 10.1029/2002JB002193
  • 3. Broussolle J, Kyovtorov V, Basso M, Ferraro di Silvi e Castiglione G, Figueiredo Morgado J, Giuliani R, Oliveri F, Sammartini PF, Tarchi D (2014) MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia. J Photogramm Remote Sens 91:50–58. doi: 10.1016/j.isprsjprs.2014.02.003
  • 4. Burtin A, Hovius N, Turowski JM (2016) Seismic monitoring of torrential and fluvial processes. Earth Surf Dyn 4(2):285–307. doi: 10.5194/esurf-4-285-2016
  • 5. Ciampalini A, Raspini F, Bianchini S, Tarchi D, Vespe M, Moretti S, Casagli N (2016) The Costa Concordia last cruise: the first application of high frequency monitoring based on COSMO-SkyMed constellation for wreck removal. J Photogramm Remote Sens 112:37–49. doi: 10.1016/j.isprsjprs.2015.12.001
  • 6. Coviello V, Chiarle M, Arattano M, Pogliotti P, Morra di Cella U (2015) Monitoring rock wall temperatures and microseismic activity for slope stability investigation at J.A. Carrel hut, Matterhorn. In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering geology for society and territory, vol 1. Springer, Cham, pp 305–309. doi: 10.1007/978-3-319-09300-0_57
  • 7. Ferretti G, Zunino A, Scafidi D, Barani S, Spallarossa D (2013) On microseisms recorded near the Ligurian coast (Italy) and their relationship with sea wave height. Geophys J Int 194(1):524–533. doi: 10.1093/gji/ggt114
  • 8. Gibbons SJ, Ringdal F (2006) The detection of low magnitude seismic events using array-based waveform correlation. Geophys J Int 165(1):149–166. doi: 10.1111/j.1365-246X.2006.02865.x
  • 9. Gibbons SJ, Sørensen MB, Harris DB, Ringdal F (2007) The detection and location of low magnitude earthquakes in northern Norway using multi-channel waveform correlation at regional distances. Phys Earth Planet Inter 160(3–4):285–309. doi: 10.1016/j.pepi.2006.11.008
  • 10. Gómez-Enri J, Scozzari A, Soldovieri F, Vignudelli S (2013) ENVISAT radar altimetry for coastal and inland waters: case-study of the Costa Concordia ship to understand non-water targets using a tomographic technique. Int Water Technol J 3(2):60–69
  • 11. Helffrich G, Wookey J, Bastow I (2013) The seismic analysis code: a primer and user’s guide. Cambridge University Press, Cambridge
  • 12. Larose E, Carrière S, Voisin C, Bottelin P, Baillet L, Guéguen P, Walter F, Jongmans D, Guillier B, Garambois S, Gimbert F, Massey C (2015) Environmental seismology: what can we learn on earth surface processes with ambient noise? J Appl Geophys 116:62–74. doi: 10.1016/j.jappgeo.2015.02.001
  • 13. Latorre D, Amato A, Cattaneo M, Carannante S, Michelini A (2014) Man-induced low-frequency seismic events in Italy. Geophys Res Lett 41(23):8261–8268. doi: 10.1002/2014GL062044
  • 14. Longuet-Higgins MS (1950) A theory of the origin of microseisms. Philos Trans R Soc A 243(857):1–35. doi: 10.1098/rsta.1950.0012
  • 15. Manconi A, Allasia P, Giordan D, Baldo M, Lollino G (2013) Monitoring the stability of infrastructures in an emergency scenario: the “Costa Concordia” vessel wreck. In: Wu F, Qi S (eds) Global view of engineering and the environment. CRC Press, London, pp 587–591
  • 16. Manconi A, Picozzi M, Coviello V, De Santis F, Elia L (2016) Real-time detection, location, and characterization of rockslides using broadband regional seismic networks. Geophys Res Lett 43(13):6960–6967. doi: 10.1002/2016GL069572
  • 17. Mucciarelli M (2012) The seismic wake of Costa Concordia. Seismol Res Lett 83(4):636–638. doi: 10.1785/0220120020
  • 18. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quart Rep Railw Tech Res Inst 30(1):25–33
  • 19. Peterson J (1993) Observation and modeling of seismic background noise. US Geol Surv Tech Rep 93–322:1–95
  • 20. Raspini F, Moretti S, Fumagalli A, Rucci A, Novali F, Ferretti A, Prati C, Casagli N (2014) The COSMO-SkyMed constellation monitors the Costa Concordia wreck. Remote Sens 6:3988–4002. doi: 10.3390/rs6053988
  • 21. Regoli F, Pellegrini D, Cicero AM, Nigro M, Benedetti M, Gorbi S, Fattorini D, d’Errico G, Di Carlo M, Nardi A, Gaion A, Scuderi A, Giuliani S, Romanelli G, Berto D, Trabucco B, Guidi P, Bernardeschi M, Scarcelli V, Frenzilli G (2014) A multidisciplinary weight of evidence approach for environmental risk assessment at the Costa Concordia wreck: integrative indices from mussel watch. Mar Environ Res 96:92–104. doi: 10.1016/j.marenvres.2013.09.016
  • 22. Saccorotti G, Del Pezzo E (2000) A probabilistic approach to the inversion of data from a seismic array and its application to volcanic signals. Geophys J Int 143(1):249–261. doi: 10.1046/j.1365-246x.2000.00252.x
  • 23. Schmandt B, Gaeuman D, Stewart R, Hansen SM, Tsai VC, Smith J (2017) Seismic array constraints on reach-scale bedload transport. Geology. doi: 10.1130/G38639.1
  • 24. Schröder-Hinricks J, Hollnagel E, Baldauf M (2012) From Titanic to Costa Concordia—a century of lessons not learned. WMU J Marit Aff 11(2):151–167. doi: 10.1007/s13437-012-0032-3
  • 25. Serafino F, Ludeno G, Lugni C, Natale A, Arturi D, Brandini C, Soldovieri F (2013) Diffracted waves from the aground Costa Concordia cruise and detected by the Remocean system. In: IEEE international geoscience and remote sensing symposium (IGARSS). doi: 10.1109/IGARSS.2013.6723101
  • 26. Shapiro NM, Ritzwoller MH, Bensen GD (2006) Source location of the 26 sec microseism from cross-correlations of ambient seismic noise. Geophys Res Lett 33(18):L18310. doi: 10.1029/2006GL027010
  • 27. Tang C, Li L, Xu N, Ma K (2015) Microseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineering. J Rock Mech Geotech Eng 7(5):493–508. doi: 10.1016/j.jrmge.2015.06.010
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c6e055f-d18c-4dc6-9de5-cc5f7af613a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.