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Abstract 
 

This work deals with the performance evaluation of EDF (Earliest Deadline 
First) packet scheduler with two classes. The primary metric of interest is the 
mean sojourn time for each class. The system is composed of two classes (two 
queues) with Poisson input to each of them, deterministic service times and 
exponentially distributed deadline values. The model is analysed as an embed-
ded Markov chain at the instants of packet departures from the service. The 
solution i.e. the joint probability distribution of the number of packets in each 
queue is obtained using the matrix approach. The metrics such as the mean 
sojourn time or the mean number of packets in the system for each class are 
directly obtained from this joint probability distribution. 

 
Keywords –  Earliest Deadline First, scheduling, performance evaluation, Markov 
chains 
 
1. Introduction 
 
At the output port of a packet network node with more than one traffic class (appro-
priately marked packet streams and their associated queues) there is always an issue 
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what order the packets from different classes should go to the service. The algorithm 
determining the order the packets from different classes (queues) are taken to the 
service i.e. the transmission at the output port is called the scheduling algorithm. 
There exist several scheduling algorithms proposed for the packet service at the net-
work nodes. Among them the most popular are FIFO (First In First Out), PQ (Priority 
Queueing) [1], WFQ (Weighted Fair Queueing) [2], EDF (Earliest Deadline First) [3].  

Each of these algorithms was designed to meet particular requirements, e.g. FIFO 
algorithm which stores all packets from different streams (classes) in one queue was 
designed to achieve implementation simplicity. PQ algorithm was designed to assure 
a minimum queueing delay for the packet stream (class) served with the highest pri-
ority. WFQ was designed to provide fair bandwidth sharing (i.e. the ability to utilize 
the unused bandwidth) among different classes with the guarantees of the minimum 
bandwidth for each class. Finally EDF was designed to meet some delay require-
ments imposed for each class.  
 Depending on the scheduling algorithm and the values of its parameters the pack-
ets from different classes experience different delays and build up queues of different 
sizes. The measures of packet delays and queue sizes are the basic metrics of interest 
[4], [5] because they are used for resource dimensioning and performance evaluation 
at the network nodes. In this work we focus on the mean packet delays for each class 
served with EDF algorithm.  
 There have been already published some papers about the performance of EDF 
scheduler. They differ in assumptions, targets and methods of providing the solution. 
In [6] the authors derive bounds on the packet delay for packet flows with traffic 
characteristics bounded by some deterministic values. The paper [7] studies the an-
alytical method to approximate the fraction of jobs missing their deadlines (the as-
sumed performance measure) when earliest-deadline-first (EDF) scheduling policy 
is used. The deadlines have general distribution the input is modelled as Poisson 
stream and the service times have the exponential distribution.  

The authors of [8] derive the stochastic bounds for the probability distribution 
function of the packet delay in case of a number of multiplexed packet flows each 
modelled as Markov Modulated On-Off source. They use martingale and sample-
path approach.  

In [9] EDF scheduler with the shaped input traffic i.e. traffic flows modelled as 
Exponentially Bounded Burstiness is analysed. The authors derive the stochastic 
bounds on the probability distribution of the end-to-end delay for traffic shaper ele-
ments and EDF scheduler with deterministic deadlines.  
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In [10] the large deviation principle and the effective bandwidth theory are used 
to develop an analytical model which is able to predict the deadline violation proba-
bility of individual classes in Earliest Deadline First (EDF) scheduler with determin-
istic deadline values.  
 The rest of the paper is organized as follows: In section 2 we provide the analysis 
of the modelled system. We start with the description of the modelled system and 
EDF algorithm in subsection 2.1. In subsection 2.2 we explain the analytical method 
for the system evaluation. In subsection 2.3 we provide the formulas for the mean 
sojourn and waiting times. In section 3 we provide numerical results with the com-
parison to the results of PQ algorithm. Section 4 summarizes the work.  
 
2. Analysis of the system 
 
2.1 Description of the modelled system 
 
We analyse the output port in a packet network node with EDF scheduler and two 
traffic classes (two packet streams). Packets of each class are stored in a separate 
buffer i.e. they build separate queues. Packets belonging to different classes are 
scheduled to the service according to EDF algorithm with exponential deadlines. It 
means that on a packet arrival the packet is assigned a deadline random value drawn 
from the exponential distribution.  

For each packet waiting in its queue its deadline is decreased until it goes into the 
service. When the currently served packet departs from the system (its transmission 
ends) and the next packet is to be chosen for the service (i.e. transmission) the current 
deadline values of packets in the head of line position of each queue are compared 
and the packet with the smallest deadline value is taken to the service.  In case one 
of these queues is empty the packet from the non-empty queue is scheduled for the 
transmission no matter what its deadline value is.  
 The above described system can be modelled as two queues (one for packets of 
traffic class #1 and the other for packets of traffic class #2) with a single service 
station (modelling the output port) as shown in Figure 1.   
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Figure 1. The model of the system with two classes (two queues) 
 
The packets of each class arrive to the system according to Poisson process [11] with 
intensities λ1 and λ2 for class #1 and class #2 respectively. The packets of each class 
have a constant length such that their transmission times are t1 and t2 for class #1 and 
class #2 respectively. The values of deadlines are drawn from the exponential distri-
bution with parameters μ1 and μ2 for class #1 and class #2 respectively.  
 We observe the system state at the time instants (the epochs) just after the depar-
ture of a packet from the service. The system state just after the n-th packet departure 
we define as a vector of 3 variables: Mn – the number of packets type #1 in the 
system, Nn – the number of packets type #2 in the system, On – the type of packet 
just served. The random variable On takes the value 1 for a packet type #1 and the 
value 2 for a packet type #2. The time instants of the observation of the system state, 
the packet arrivals as well as the packet services are depicted in the Figure 2.  

The vector Sn forms a Markov chain [12] i.e. the state of the system at the (n+1)-
th epoch can be fully determined based on the information about the system state at 
the n-th epoch.  

 

    
 
Figure 2. The time evolution of the system state 
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2.2.1.  Analysis of the probability distribution of the number of packets in     
the system 

 
In order to characterize the time evolution of the system state it is enough to deter-
mine the transition probabilities from state Sn to the state Sn+1. i.e.  
 

)},,(|),,({Pr 1 kjiSonmSob nn+        (1) 
 
First we notice that the deadline values are random variables X1 and X2 for class #1 
and class #2 respectively with the exponential distribution i.e. their probability den-
sity functions are given by the following formulas: 
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The exponential distribution function posses the memoryless property [11] which 
means that the probability distribution of the remaining time doesn't depend on the 
time you have already spent in the system. The proof is outlined below: 
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In our case it means that at the moment of scheduling the next packet for the service 
it is enough to compare the deadlines values as if they were drawn at that instant. In 
other words in order to decide which packet (class #1 or class #2) should be sched-
uled for the transmission it is enough to calculate the probabilities: 
 

}{Pr 12 XXob ≤           (5) 
and  
 

}{Pr 21 XXob ≤          (6) 
Each time there is at least one packet present in each queue in the system the packet 
class #1 is scheduled with the probability (6) and the packet class #2 is scheduled 
with probability (5). 
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The probability given in (5) can be determined as follows: 
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In a similar way the probability given in (6) can be determined to be: 
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Regarding the number of the packets in the system at the (n+1)-th epoch i.e. Mn+1 
and Nn+1 for class #1 and class #2 respectively it is simply the number of packets 
observed in the system at the previous n-th epoch plus the number of packets that 
have arrived during the service time (to each queue separately) minus the one packet 
that has departed from the service. If the departing packet belonged to class #1 the 
queue #1 is decreased. If the departing packet belonged to class #2 the queue #2 is 
decreased. If the departing packet left the system empty (both classes are empty) 
then no queue is decreased. This behaviour can be summarize in the following set of 
equations: 
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where An+1,i (i=1,2) denotes the random variable describing the number of arrived 
packets type 1 or 2 to the respective queue during the service time of a packet that 
has departed from the  system at the (n+1)th epoch.  
 Taking into account the set of equations (10) and the probabilities of the next 
packet to be scheduled for the service given in equations (8) and (9) the transition 
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probabilities from state Sn(i,j,k) to the state Sn+1(m,n,o) can be calculated according 
to the formulas given in (11): 

 
  
 
 
 
 
 
 

(11) 
 
 
 
 
 
 

 
In (11) the transition probabilities have been expressed only in terms of the proba-
bility of new packet arrivals during the service time of a packet. Since in subsection 
2.1 we assumed the arrivals form Poisson process with intensities λ1 and λ2 for class 
#1 and class #2 respectively the probability that are 'x' class #1 packet arrivals is 
given by (12) [11]: 
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and the probability that there are 'x' class #2 packet arrivals is given by (13): 
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In equations (12) and (13) the parameter t should be substituted with t1 or t2 depend-
ing on the type of packet departing from the system at (n+1)th epoch.  
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Equations (11), (12) and (13) let us calculate the transition probabilities from state 
Sn(i,j,k) to the state Sn+1(m,n,o). These probabilities form so called transition matrix 
denoted T.  
 Solving the matrix equation given in (14) provides us with the solution i.e. Π 
vector which is the joint steady-state probability distribution of the three random 
variables (M,N,O): 
 

ΤΠ=Π *            (14) 
 
The probability distribution Π1 of the number of packets class #1 (or Π2 of the number 
of packets class #2) in the system can be calculated as the marginal distribution of 
the solution Π. Using the probability distributions Π1 or Π2 one can easily calculate 
the mean values.  
 
2.3 Analysis of the mean waiting and mean sojourn times 
 
As pointed out in section 1 it is especially interesting how EDF scheduler and the 
values of its parameters (μ1 and μ2) impact the packet delays for each class.  
The mean value of the sojourn time E(T) (the time from the packet arrival till its 
departure from the system) can be calculated based on Little's formula [12] which 
states that the mean number of packets in the system E(N) equals the mean sojourn 
time E(T) multiplied by the packet arrivals intensity λ: 
 

)()( TENE λ=            (15) 
 
The mean waiting time E(W) can be obtained from the mean sojourn time E(T) since 
their difference is the mean service time E(S): 
 

)()()( SETEWE −=          (16) 
 
3. Numerical results 
 
The results have been obtained using SageMath [13] Open Source tool. The mean 
sojourn times for two packet classes (E(T1) and E(T2)) with packet arrival intensities 
equal to λ1=λ2=0.25 and packet service times t1=t2 equal to 1 are presented on Figure 
3. The mean sojourn times are expressed in units equal to the service (transmission) 
time of a single packet (t1=t2=1). On the same Figure 3 there are also results for PQ 
scheduler with two classes and the same traffic parameters (arrival intensities and 
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packet service times) as for EDF scheduler. For PQ scheduler it is assumed that pack-
ets of class #2 have higher priority than packets of class #1.  
           

 
Figure 3. Mean sojourn times for two packet classes with EDF or PQ scheduler as 
a function of μ2/μ1 ratio  
 
The results obtained for EDF scheduler have been referenced to the results of PQ 
scheduler. In this comparison PQ scheduler might be considered as a limit case i.e. 
it is equivalent as setting the value of μ1 or μ2 parameter to infinity. In PQ scheduler 
with two traffic classes the packets of the lower priority class will be served only 
when there are no higher priority packets in the system. Similar behaviour would be 
observed with μ1 (or μ2) parameter set to infinity. Then every time there is a decision 
what packet should be served (class #1 or class#2) the packets belonging to the class 
with μ parameter set to infinity would be chosen. This is due to the fact that with μ1 
(or μ2) set to infinity the probability given in equation (9) (equation (8) respectively) 
tends to 1. From the obtained results we can conclude when the ratio of μ2/μ1 ap-
proaches 64 EDF scheduler behaves almost as PQ scheduler with class #2 having the 
higher priority.  
 On the other hand when both classes have the same parameters including μ2 and 
μ1 responsible for deadline values then packets from both classes experience the 
same delays. This delay is the same as for FIFO scheduler since there is no differen-
tiation between the classes as they have all the same parameter values. On the Figure 
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3 this is the point for μ2/μ1 equal 1. When the μ2/μ1 ratio increases the mean waiting 
and sojourn times of these classes diverge from themselves.  
 
4. Summary 
 
In this work we have modelled and solved the system with two traffic classes 
(queues) and EDF scheduler with deadline values following the exponential distri-
bution. We have defined the system state as a set of three random variables and de-
scribed the evolution of the system state as a Markov chain. We have provided the 
numerical results for a given set of parameter values and showed the behaviour of 
EDF scheduler can approach the behaviour of PQ scheduler when the ratio of μ val-
ues (either μ2/μ1 or μ1/μ2) tends to infinity. On the other hand, if the parameter values 
are the same for both classes EDF scheduler behaves like FIFO. We can conclude 
that adjusting the value of μ2/μ1 ratio we can control the differentiation of the delay 
experienced by packets of each class and bias it toward FIFO or the opposite direc-
tion i.e. toward PQ scheduler. 
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