PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic validation of the gantry tilt in a computed tomography scanner using a head polymethyl methacrylate phantom

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to develop an automatic method for validating the computed tomography gantry tilt. A head polymethyl methacrylate phantom with a diameter of 16 cm was used. Gantry tilt angles were measured both manually and automatically. Manual measurements were performed by measuring the length of the anteroposterior and lateral diameters from acquired images using electronic calipers. Automatic measurements consisted of a number of steps: phantom segmentation, determination of the center of the phantom, measurement of the anteroposterior and lateral diameters, and computation of the gantry tilt angle. The method was implemented on the gantry angles from 0° to 15°. The proposed method of measuring gantry angles produced accurate gantry tilt angles. The differences with the angles displayed on the gantry were less than 1°. The results of the automatic method were the same as those of the manual method (R2 > 0.98).
Rocznik
Strony
57--62
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl.Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl.Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl.Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Department of Applied Physics and Medical Imaging, California State University Channel Islands, Camarillo, CA 93012, USA
  • Department of Electromedical Engineering, Poltekkes Kemenkes, Surabaya, East Java, Indonesia
Bibliografia
  • 1. Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51:29-43. https://doi.org/10.1088/0031-9155/51/13/R03
  • 2. Seeram, E. Computed tomography: Physical principles, clinical applications, and quality control. Elsevier. Fourth edition. 2016.
  • 3. Ebrahiminia A, Asadinezhad M, Mohammadi F, Khoshgard K. Eye lens dose optimization through gantry tilting in brain ct scan: the potential effect of the radiological technologists’ training. Radiat Prot Dosimetry. 2020;189:527-33. https://doi.org/10.1093/rpd/ncaa073
  • 4. Anam C, Fujibuchi T, Haryanto F, et al. An evaluation of computed tomography dose index measurements using a pencil ionisation chamber and small detectors. J Radiol Prot. 2019;39:112-24. https://doi.org/10.1088/1361-6498/aaf2b4
  • 5. Anam C, Fujibuchi T, Toyoda T. et al. The impact of head miscentering on the eye lens dose in CT scanning: Phantoms study. J Phys Conf Ser. 2019;1204:012022. https://doi.org/10.1088/1742-6596/1204/1/012022
  • 6. International Commission on Radiological Protection. Annals of the ICRP Annals of the ICRP Annals of the ICRP. ICRP Publication 92, annals of ICRP 28. 2003.
  • 7. Ishizaka H, Naka M, Nagase H, et al. A new brain CT reference line:the lower eyelid to the inner occipital base line closely parallels the Talairach–Tournoux line. Acta Radiologica Open. 2020;9:1-6. https://doi.org/10.1177/2058460120902406
  • 8. Nishizawa K, Maruyama T, Takayama M, Okada M, Hachiya J, Furuya Y. Determinations of organ doses and effective dose equivalents from computed tomographic examination. Br J Radiol. 1991;64:20-8. https://doi.org/10.1259/0007-1285-64-757-20
  • 9. Maclennan AC. Radiation dose to the lens from CT brain scans in general radiology departments. Br J Radiol. 1995;68:219. https://doi.org/10.1259/0007-1285-68-806-219
  • 10. Poon R, Badawy MK. Radiation dose and risk to the lens of the eye during CT examinations of the brain. J Med Imaging Radiat Oncol. 2019;63:786-94. https://doi.org/10.1111/1754-9485.12950
  • 11. Nikupaavo U, Kaasalainen T, Reijonen V, Ahonen SM, Kortesniemi M. Lens dose in routine head CT: Comparison of different optimization methods with anthropomorphic phantoms. Am J Roentgenol. 2015;204:117-23. https://doi.org/10.2214/AJR.14.12763
  • 12. Fung KKL, Choi KHW, Hom H. Lens dose reduction in paediatric ct brain scan using the supra-orbitomeatal baseline technique. ECR 2005. 2005. https://doi.org/10.1594/ECR05/C-0994
  • 13. Parsi M, Sohrabi M, Mianji F, Paydar R. Gantry angulation effects on CT dose along the z-axis direction in head examinations. Radiat Prot Dosimetry. 2017;177:458-65. https://doi.org/10.1093/rpd/ncx064
  • 14. Ali STM, Hamad MM, Ayad CE, Abdalla EA, Ahmed AS. Evaluation of the technical specifications of computerized tomography scanners in Jazan. Sudan Med Monit. 2013;8:159-66. https://doi.org/10.4103/1858-5000.132611
  • 15 Abou-Elenein HS. Quality assurance for computed-tomography simulator: In home Z-phantom for mechanical tests of the couch and the gantry. Chinese-German J Clin Oncol. 2013;12(5):237-242. 2013. https://doi.org/10.1007/s10330-012-1133-3
  • 16. Diagnostic X-Ray Imaging Committee. Specification and Acceptance Testing of Computed Tomography Scanners. AAPM Report No. 39. New York: the American Institute of Physics, Inc. 1993.
  • 17. Sharma DS, Sharma SD, Sanu KK, Saju S, Deshpande DD, Kannan S. Performance evaluation of a dedicated computed tomography scanner used for virtual simulation using in-house fabricated CT phantoms. J Med Phys. 2006;31:28-35. https://doi.org/10.4103/0971-6203.25667
  • 18. American Association of Physicists in Medicine. Specification and acceptance testing of computed tomography scanners. AAPM Report No. 39. 1993.
  • 19. Anam C, Haryanto F, Widita R, Arif I. Automated Estimation of Patient’s Size from 3D Image of Patient for Size Specific Dose Estimates (SSDE). Adv Sci Eng Med. 2015;7:892-6. https://doi.org/10.1166/asem.2015.1780
  • 20. Anam C. Haryanto F, Widita R, Arif I, Dougherty G. A fully automated calculation of size-specific dose estimates (SSDE) in thoracic and head CT examinations. J Phys Conf Ser. 2016;694:012030. https://doi.org/10.1088/1742-6596/694/1/012030
  • 21. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. Automated calculation of water-equivalent diameter (DW) based on AAPM task group 220. J Appl Clin Med Phys. 2016;17:32033. https://doi.org/10.1120/jacmp.v17i4.6171
  • 22. Boulter DJ, Rumboldt Z, Bonaldi G, Muto M, Cianfoni A. Tilting the gantry for CT-guided spine procedures. Radiol Medica. 2014;119:750-7. https://doi.org/10.1007/s11547-013-0344-1
  • 23. IAEA. Quality assurance programme for computed tomography: Diagnostic and therapy applications. IAEA Huma. Health Series No. 19. 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c6918f4-48ff-4c61-b4fc-7b054611b7c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.