PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on progress and challenges of the power generation systems at micro-scales

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The miniaturization of electro-mechanical devices, and the resulting need for micro-power generation (milliwatts to watts) with low weight, long life devices, has led to the recent development of the field of micro-scale combustion and power generation. The primary objective of this new field is to leverage the high energy density of fuels, specifically liquid hydrocarbon fuels relative to batteries and all other energy storage devices other than nuclear fission, fusion or decay. Some brief scaling arguments are given in this work, and more detailed efforts are referred. A brief introduction to several of the fabrication techniques is presented in this work. Hydrogen-based and some preliminary specialty fuel micro-fuel cells have been successfully developed, and there is a need to develop reliable reformers (or direct conversion fuel cells) for liquid hydrocarbons so that the fuel cells become competitive with the batteries. In this work, the technological issues related to micro-scale combustion and the development of thermochemical devices for power generation will be discussed. Some of the systems currently being developed will be presented, ongoing critical study issues under investigation, and other potential areas of development discussed. Comments regarding the opportunities and limitations of each of the techniques are also presented where applicable.
Rocznik
Tom
Strony
185--198
Opis fizyczny
Bibliogr., 38 poz., fot., wykr., wz.
Twórcy
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, Henan, China
autor
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, Henan, China
Bibliografia
  • [1] Boyarko G.A., Sung C.-J., Schneider S.J., Catalyzed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications. Proceedings of the Combustion Institute 30(2) (2005) 2481-2488.
  • [2] Zhou J., Wang Y., Yang W., Liu J., Wang Z., Cen K., Combustion of hydrogen-air in catalytic micro-combustors made of different material. International Journal of Hydrogen Energy 34(8) (2009) 3535-3545.
  • [3] Wang Y., Zhou Z., Yang W., Zhou J., Liu J., Wang Z., Cen K., Combustion of hydrogenair in micro combustors with catalytic Pt layer. Energy Conversion and Management 51(6) (2010) 1127-1133.
  • [4] Shih H.-Y., Liu C.-R., A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbines. International Journal of Hydrogen Energy 39(27) (2014) 15103-15115.
  • [5] Yuasa S., Oshimi K., Nose H., Tennichi Y., Concept and combustion characteristics of ultra-micro combustors with premixed flame. Proceedings of the Combustion Institute 30(2) (2005) 2455-2462.
  • [6] Kamada T., Nakamura H., Tezuka T., Hasegawa S., Maruta K., Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile. Combustion and Flame 161(1) (2014) 37-48.
  • [7] Miyata E., Fukushima N., Naka Y., Shimura M., Tanahashi M., Miyauchi T., Direct numerical simulation of micro combustion in a narrow circular channel with a detailed kinetic mechanism. Proceedings of the Combustion Institute 35(3) (2015) 3421-3427.
  • [8] Liu Y.C., Xu Y., Avedisian C.T., Hicks M.C., The effect of support fibers on microconvection in droplet combustion experiments. Proceedings of the Combustion Institute 35(2) (2015) 1709-1716.
  • [9] Li Y.-H., Chen G.-B., Wu F.-H., Cheng T.-S., Chao Y.-C., Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel. Combustion and Flame 159(4) (2012) 1644-1651.
  • [10] Wan J., Fan A., Maruta K., Yao H., Liu W., Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body. International Journal of Hydrogen Energy 37(24) (2012) 19190- 19197.
  • [11] Badra J., Masri A.R., Zhou C., Haynes B.S., An experimental and numerical study of surface chemical interactions in the combustion of propylene over platinum. Combustion and Flame 160(2) (2013) 473-485.
  • [12] Smyth S.A., Kyritsis D.C., Experimental determination of the structure of catalytic micro-combustion flows over small-scale flat plates for methane and propane fuel. Combustion and Flame 159(2) (2012) 802-816.
  • [13] Kaisare N.S., Vlachos D.G., Extending the region of stable homogeneous microcombustion through forced unsteady operation. Proceedings of the Combustion Institute 31(2) (2007) 3293-3300.
  • [14] Sakurai T., Yuasa S., Ono Y., Honda T., Flame stability and emission characteristics of propane-fueled flat-flame miniature combustor for ultra-micro gas turbines. Combustion and Flame 160(11) (2013) 2497-2506.
  • [15] Sakurai T., Yuasa S., Honda T., Shimotori S., Heat loss reduction and hydrocarbon combustion in ultra-micro combustors for ultra-micro gas turbines. Proceedings of the Combustion Institute 32(2) (2009) 3067-3073.
  • [16] Ohiwa N., Ishino Y., Yamamoto A., Important roles of multiphase process in enhancement mechanism of micro plastic particle combustion. Proceedings of the Combustion Institute 32(2) (2009) 1997-2004.
  • [17] Hosseini S.E., Wahid M.A., Investigation of bluff-body micro-flameless combustion. Energy Conversion and Management 88(0) (2014) 120-128.
  • [18] Maruta K., Micro and mesoscale combustion. Proceedings of the Combustion Institute 33(1) (2011) 125-150.
  • [19] Bartrom A.M., Ta J., Nguyen T.Q., Her J., Donovan A., Haan J.L., Optimization of an anode fabrication method for the alkaline Direct Formate Fuel Cell. Journal of Power Sources 229(0) (2013) 234-238.
  • [20] Azimov U., Okuno M., Tsuboi K., Kawahara N., Tomita E., Multidimensional CFD simulation of syngas combustion in a micro-pilot-ignited dual-fuel engine using a constructed chemical kinetics mechanism. International Journal of Hydrogen Energy 36(21) (2011) 13793-13807.
  • [21] Ryi S.-K., Park J.-S., Choi S.-H., Cho S.-H., Kim S.-H., Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion. Chemical Engineering Journal 113(1) (2005) 47-53.
  • [22] Hwang K.-R., Lee C.-B., Lee S.-W., Ryi S.-K., Park J.-S., Novel micro-channel methane reformer assisted combustion reaction for hydrogen production. International Journal of Hydrogen Energy 36(1) (2011) 473-481.
  • [23] Ganji H.B., Ebrahimi R., Numerical estimation of blowout, flashback, and flame position in MIT micro gas-turbine chamber. Chemical Engineering Science 104(0) (2013) 857-867.
  • [24] Wan J., Yang W., Fan A., Liu Y., Yao H., Liu W., Du Y., Zhao D., A numerical investigation on combustion characteristics of H2/air mixture in a micro-combustor with wall cavities. International Journal of Hydrogen Energy 39(15) (2014) 8138-8146.
  • [25] Jeon S.W., Yoon W.J., Jeong M.W., Kim Y., Optimization of a counter-flow microchannel reactor using hydrogen assisted catalytic combustion for steam reforming of methane. International Journal of Hydrogen Energy 39(12) (2014) 6470-6478.
  • [26] Moskovskikh D.O., Lin Y.-C., Rogachev A.S., McGinn P.J., Mukasyan A.S., Spark plasma sintering of SiC powders produced by different combustion synthesis routes. Journal of the European Ceramic Society 35(2) (2015) 477-486.
  • [27] Kuo C.H., Ronney P.D., Numerical modeling of non-adiabatic heat-recirculating combustors. Proceedings of the Combustion Institute 31(2) (2007)
  • [28] Cho J.-H., Lin C.S., Richards C.D., Richards R.F., Ahn J., Ronney P.D., Demonstration of an external combustion micro-heat engine. Proceedings of the Combustion Institute 32(2) (2009) 3099-3105.
  • [29] Lewis Jr D.H., Janson S.W., Cohen R.B., Antonsson E.K., Digital micropropulsion. Sensors and Actuators A: Physical 80(2) (2000) 143-154.
  • [30] Yu X., Manthiram A., Catalyst-selective, scalable membraneless alkaline direct formate fuel cells. Applied Catalysis B: Environmental 165(0) (2015) 63-67.
  • [31] Wang Y., Shi Y., Yu X., Cai N., Thermal shock resistance and failure probability analysis on solid oxide electrolyte direct flame fuel cells. Journal of Power Sources 255(0) (2014) 377-386.
  • [32] Giddey S., Badwal S.P.S., Kulkarni A., Munnings C., A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science 38(3) (2012) 360-399.
  • [33] Bartrom A.M., Haan J.L., The direct formate fuel cell with an alkaline anion exchange membrane. Journal of Power Sources 214(0) (2012) 68-74.
  • [34] Wang K., Zeng P., Ahn J., High performance direct flame fuel cell using a propane flame. Proceedings of the Combustion Institute 33(2) (2011) 3431-3437.
  • [35] Vogler M., Horiuchi M., Bessler W.G., Modeling, simulation and optimization of a nochamber solid oxide fuel cell operated with a flat-flame burner. Journal of Power Sources 195(20) (2010) 7067-7077.
  • [36] Wang Y., Shi Y., Ni M., Cai N., A micro tri-generation system based on direct flame fuel cells for residential applications. International Journal of Hydrogen Energy 39(11) (2014) 5996-6005.
  • [37] Kronemayer H., Barzan D., Horiuchi M., Suganuma S., Tokutake Y., Schulz C., Bessler W.G., A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane. Journal of Power Sources 166(1) (2007) 120-126.
  • [38] Choi W., Kwon S., Dong Shin H., Combustion characteristics of hydrogen air premixed gas in a sub-millimeter scale catalytic combustor. International Journal of Hydrogen Energy 33(9) (2008) 2400-2408.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c5f99a1-a54f-473b-bbb7-259553b3f0e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.