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Summary: This paper presents realization and the laboratory tests of the Kohonen winner 
takes all (WTA) neural network (NN) realized on microcontrollers (µC) with the AVR 
and ARM CortexM3 cores, as well as the comparison with the full custom implementa-
tion of analog network of this type in the CMOS technology. The two µCs have been 
placed on a single testing board to facilitate the comparison. The board allows for switch-
ing between the two µCs, it enables selection of either the Euclidean (L2) or the Manhat-
tan (L1) distance measures. It also allows for turning on/off the so-called conscience 
mechanism. Some signals illustrating the training of the network can be observed directly 
on the board. The full learning process with all essential parameters can be viewed on PC 
using the USB port. The prospective application of the system is in on-line analysis of the 
ECG and EMG biomedical signals in the health care diagnostic systems, as well as in the 
student laboratories on neural networks and programmable devices. 

Keywords: WTA network, digital neural networks, analog neural networks, micro-
controller, low energy consumption 

1. INTRODUCTION 

Artificial NNs are commonly used in such tasks that require processing and classi-
fication of “difficult” signals e.g. non-stationary signals, heuristic data etc. in medical 
health care, telecommunication, electrical engineering and other application areas. In 
literature one can find various implementation techniques of NNs both the software- 
and the hardware-based. Considering such criteria as energy consumption, calculation 
capacity and device size, full-custom designed networks are the most efficient solutions 
[15]. NNs realized as application specific integrated circuits (ASIC) allow, for example, 
for parallel data processing, and thus consuming significantly less energy are often 
faster than the software-based networks. The full-custom style allows for a very good 
matching of the circuit structure to a given task. A disadvantage of this approach is 
relatively complex design process and large fabrication cost in case of short series. It is 
also relatively difficult to built-in such a programmable network of this type.  
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In this paper the authors present realization of the Kohonen WTA NN [2] using an 
alternative approach based on two µCs, as well as the comparison with the analog WTA 
NN previously implemented in the CMOS 0.18 µm technology. For this purpose a spe-
cial testing board has been developed using the Eagle 5.6 environment. To get a better 
insight into the parameters of the NN realized in this way, two different µCs have been 
used i.e. the 8-bits AVR and the 32-bits ARM CortexM3. Such realized testing board 
allows for training the NN with different parameters i.e. with two different measures 
(L1 / L2) of similarity between the input training patterns X and the weight vectors W of 
particular neurons. Both measures are shortly presented in Section III. The network can 
be trained with or without the so-called conscience mechanism [13, 14, 15]. All these 
modes can be selected by the manually-operated switches placed directly on the board. 

Realizations that involve µCs are relatively cheap, which is one of their important 
advantages. In comparison with custom-designed networks all parameters can be easily 
reprogrammed. On the other hand, because of serial data processing, networks of this 
type are relatively slow and thus are suitable for small networks with up to fifty neurons 
and sampling frequencies not exceeding 100 kHz. However, many applications still can 
be indicated, in which such parameters are accepted, e.g. in the analysis and classifica-
tion of the ECG and EMG biomedical signals sampled at max 2 kHz. 

Implementation of neural networks on µCs is significantly cheaper than realization 
of such networks by use of digital signal processors (DSP) or in field programmable 
gate array (FPGA). Furthermore, microcontrollers offered on the market today aid float-
ing point operations, while multiplication operations are performed in a single clock 
cycle. As a result, the general parameters of both platforms are often comparable. It is 
worth mentioning that very often core blocks of DSPs are the same like those used in 
microcontrollers (the ARM core).  

The paper is organized as follows. State-of-the-art in the field of Kohonen WTA 
NNs realized using programmable platforms and the analog technique is presented in 
next section. An overview of the WTA NN principle is provided in Section III. Section 
IV presents realization of the testing board described above. In Section V selected 
measurement results are shown together with a discussion of the achieved parameters. 
The conclusions are covered in Section VI. 

2. STATE-OF-THE-ART STUDY 

2.1. REALIZATIONS OF THE KOHONEN NEURAL NETWORKS BASED 
ON  MICROCONTROLLERS 

An idea of the implementation of the self organizing map (SOM) [2] using SIMD 
(Single Instruction Multiple Data) processors has been described in [3]. These proces-
sors allow for parallel information processing using a single instruction. They find the 
application in the newest computer systems. The authors of [3] focused on different 
methods of detection of the winning neuron i.e. on the so called WTA circuits.  

Using SIMD processors is beneficial in case of large NNs with more than 100 neu-
rons, in which data rate is one of the key parameters. In case of smaller networks with 
sampling frequencies not exceeding 100 kHz such realizations become uneconomical. The 
SIMD processors are more expensive and dissipate more power than the AVR/ARM µCs. 
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The other reason, important in commercial applications, is that AVR/ARM µCs can be 
easier programmed and require simpler environment (the printed circuit board). 

Another implementation has been reported in [4]. This paper presents realization 
as well as the optimization of selected arithmetic operations, such as multiplication and 
tanh using feed-forward multi-layer network implemented in PIC18F45J10 µC. The 
authors of [4] conclude that are able to implement up to 256 neuron weights using this 
µC. Assuming this network to be a multi-layer architecture, this means that relatively 
small networks can be realized with the number of neurons not exceeding 50. It is diffi-
cult to assess the performance of this network as the achievable data rate, power dissipa-
tion and the computational capacity are not provided. 

In case of hardware implemented NNs the computational capacity depends on ei-
ther data processing is performed serially or in parallel, the sampling frequency of the 
µC core, the number of neurons and several other parameters. An important issue is the 
complexity of the training algorithm offered by a NN. µCs are rather suitable for such 
networks that require simple arithmetic operations. For example, the WTA algorithm 
implemented by the authors requires only multiplications, summations and subtractions. 
For the comparison the network described in [4] requires tanh activation functions. It is 
worth mentioning that the WTA network is trained without supervision that makes this 
NN relatively faster than their counterparts trained with the supervision, in which an 
error function is calculated separately for every neuron. 

Different applications of NNs realized on µCs have been reported. Such networks 
are frequently used in control and diagnostic devices. A device described in [5] has been 
used as an intelligent wireless electronic nose node (WENN) used in classification and 
quantification of binary gas mixtures NH3 and H2S. In [6] such implemented NN is 
used in control of the furnace temperature. One can find the applications in which NNs 
only cooperate with µCs. In [7] software implemented feed-forward Back Propagation 
(BP) NN exchange data with the PIC16F84A µC that controls a device detecting dam-
ages in textiles produced in the factory.  

2.2. REALIZATIONS OF KOHONEN NEURAL NETWORKS AS ASICS 

Full-custom developments of Kohonen NNs are not common. Several examples 
can be found in [15, 16, 17]. They are based on different techniques, such us digital, 
analog or mixed analog-digital.  

A fully digital NN realized in the CMOS 0.5 µm process is reported in [16]. The 
main disadvantage in this case is a relatively large chip area, which makes the imple-
mentation of large networks fairly impractical. Each processing element (PE), repre-
senting a single neuron contains about 10.000 transistors and occupies an area of 4 mm2.

Another, mixed analog-digital, implementation has been reported in [17]. In this 
case some modules of the overall architecture like the distance calculation (L2 in this 
case) and the WTA blocks are implemented as analog components, while the adaptation 
process is realized by the use of digital blocks. The memory for the weight storage is 
implemented as digital counters that can count in both directions, depending on whether 
an input data x is greater than a neuron’sweight w or not. The adaptation mechanism 
used in this solution differs from the classic algorithm proposed by Kohonen. The learn-
ing rate, , is kept fixed, while its value results from the assumed resolution of the coun-
ter (5 bits in this particular case). Moreover, unlike the classic Kohonen’s algorithm in 
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which adaptation process depends on exact values of x and w, in [17] it depends on the 
value of the sign function, sign(x, w), always updating the counter value by ± 1.

A fully analog WTA NN has been implemented by the authors of this paper in the 
CMOS 0.18 µm technology [15]. In this implementation all main components, includ-
ing the adaptation mechanism, the Euclidean distance calculation block, as well as the 
winning neuron detection block (WTA) ware realized using analog circuitry. A full 
design cycle of this network, which started with extensive system level simulations 
performed in the software model realized in the C++ environment, covered also transis-
tor level simulations, full-custom layout design and finally the chip fabrication and 
experimental verification. The prototype chip has been realized in Canada in TSMC 
CMOS 0.18 µm process. Layout of this prototype is shown in Figure 1.  

Fig. 1. Layout of the prototype analog WTA NN implemented by the authors in the TSMC 
CMOS 0.18 µm technology 

In measurements the network with 12 channels working in parallel, sampled with  
2 MHz clock was able to operate as fast as a standard 2 GHz PC, consuming only  
700 µW of power i.e. almost 100 thousands times less than the PC. As this network was a 
first prototype, only four neurons have been implemented. In case if fifty neurons were 
realized in a single chip with ten analog inputs, the power dissipation would not exceed  
10 mW, while the chip area would equal about 1 mm2. Operating at 2 MHz the network 
would realize 8e09 operations/s. This estimation shows that the analog network realized as 
ASIC surpasses the networks implemented using the programmable platforms. 

3. LEARNING PROCESS IN THE WTA NEURAL NETWORK 

The feed-forward network that is in the scope of interests of this paper has been 
originally proposed by Teuvo Kohonen in [2]. This network features a competitive 
unsupervised learning. The weights of neurons are modified without any feedback that 
makes the learning algorithm very fast. Such networks are suitable for the applications, 
in which data rate is a key parameter e.g. in telecommunications [8-11]. Two types of 
this network are often distinguished. In this paper the WTA learning method is imple-
mented that is a special case of the winner takes most (WTM) learning algorithm for the 
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neighborhood range equal to zero. The WTA algorithm is less complex than the WTM 
one and therefore is much simpler in the hardware implementation.  

The learning in Kohonen NNs (KNN) relies on presenting the network with learn-
ing patterns, X, in order to make the neurons’ weight vectors, W, resemble presented 
data. For each pattern X the network first determines the distance between this vector 
and the W vector of each neuron. Different measures of the similarity between these 
vectors are available. One of them is the Euclidean distance defined as follows: 

∑
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In this work a modified Euclidean measure has been used, in which the rooting opera-
tion has been neglected. The results in both cases are the same, as if a < b then always 

ba < , while the rooting operation is more difficult in the hardware realization. The 
Euclidean measure can be denoted as L2. Another frequently used measure, called the 
“Manhattan” one and denoted as L1, is defined as:  

∑
=

−=

n

l

illi wxabsWXd

1

),( (2) 

In this case the squaring operations have also been neglected, which enables further 
simplification of the learning algorithm. Both these measures have been implemented by 
the authors in the µC and compared with respect to the calculation complexity. 

The adaptation of the winning neuron is in the WTA NN performed in accordance 
with the following formula: 

( ))()()()1( tWtXtWtW iii −⋅η+=+   (3) 

where  is the learning rate. Other neurons in the network that lose the competition 
remain unchanged in this algorithm. 

One of the significant problems encountered in the WTA networks are the, so-
called, dead neurons i.e. the neurons that take part in the competition but never win and 
therefore their weights remain unchanged. One of the reasons of this are badly selected 
initial values of the weights [12]. Such neurons reduce the number of classes that can be 
discriminated, thus increasing the mapping (quantization) error of the network. For this 
reason reducing the number of these neurons is an important design objective. One of 
the efficient methods in this task is by use of the, so-called, conscience mechanism [13, 
14]. Its role is to increase the likelihood of winning for all neurons in the network.  

The conscience mechanism proposed earlier by the authors and implemented in 
their analog NN has been also used in the network realized in both µCs. In this case, the 
real distance between the weight and the training vectors is made higher by adding a 
signal that is proportional to the number of the wins: 

KLWXdWXd ⋅+= countnormL2 / L1cons ),(),(  (4) 

where dL1/L2(X, W) is the real distance determined by use of either the L1 or the L2 met-
ric, dcons(X, W) is a signal modified by the conscience mechanism and then applied to 
the WTA block. The Lcount is the number of the wins of a given neuron. The K coeffi-
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cient is the gain factor that allows for controlling and optimizing the learning process by 
adjusting the strength of the conscience mechanism. The quantization error mentioned 
above is defined as:  
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where Z is the number of the iterations in each epoch, i.e. the number of all training 
patterns X in a given input data set. The j index indicates the winning neuron. 

4. TESTING BOARD WITH THE WTA NEURAL 
NETWORKIMPLEMENTED ON MICROCONTROLLERS 

The realized testing board with both µCs, shown schematically in Fig. 2, has been 
designed in the Eagle 5.6 environment. The board is composed of several blocks. One 
of them is the interface block containing the ADC/DAC standard chips that convert 
analog learning signals X to digital form used then by the µCs, as well as the neuron 
weights to analog form for the observation. The ‘Switching field’ allows for selecting 
one of the two µCs, as well as the distance measure (L1/L2), as shown in Fig. 3.  

The conscience mechanism can be turned on/off as well. The proposed system due 
to manifold of different options can be used both in commercial application and in edu-
cation. Further development possibilities of this system still exist. 

The neuron weights can be observed on-line either as the analog signals at the 
output of the DAC blocks or directly as the digital signals. The analog signals allow for 
a rough verification of the learning process on the oscilloscopes. Digital signals can be 
acquired on PC by use of the USB and RS232 serial ports, for further off-line analysis.  

Fig. 2. The proposed testing board of the programmable WTA  neural network based on micro-
controllers 
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Fig. 3. WTA learning process implemented on µC: DM_B is a distance measurement block, 
CM_B – the conscience mechanism block, WD_B – the winning neuron detecting block 
(WTA), AWC_B – weight adaptation block 

The board has been designed in such a way to enable measuring on-line the power 
dissipation, separately for the ADC / DAC blocks and for both µCs. The µCs are pro-
grammed by the use of the ISP / JTAG interfaces. The serial ports also allow for acquir-
ing on PC the learning patterns X (as digital signal samples), the calculated distances 
between the X and the W vectors, the numbers of the wins and the quantization error for 
detailed analysis of the network performance. The board allows for a full observation of 
the network with 3 inputs and 4 outputs i.e. 12 neuron weights. To make it possible, a 
single 4-channel THS1206 ADC and three AD7305 4-channel DACs have been used. 
The number of neurons can be increased but in this case only selected weights can be 
observed on-line on the oscilloscopes.  

One of the reasons of selecting in this prototype only 12 weights for direct obser-
vation was to facilitate a direct comparison with the analog network previously de-
signed by the authors with just 3 inputs and 4 outputs. For a better comparison between 
both µCs the X and the W signals have in this approach the resolution of 8 bits. This 
resolution is sufficient in many practical applications. The float type on the ARM µC 
has not been used in this case, although such a possibility still exists.  

5. LABORATORY TESTS OF THE REALIZED WTA NETWORK 

The maximum achievable data rate of the network in case of the implementation on 
µCs depends on the number of the inputs and the outputs, as shown in Fig. 4 for both 
µCs. The results are present for different parameters of the learning process. The learn-
ing speed can be determined using the following formula:  
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where fmax is the maximum clock frequency of the µC equal 16 MHz for the AVR and 
72 MHz for the ARM. NoC is the number of all cycles of the µC required for processing 
a single vector X in the network with n neurons. Note that the number of the clock cy-
cles in the AVR and the ARM µCs required to complete the same task may differ. The 
ARM µCs are more efficient, so although fmax is in this case 5 times larger, the network 
is more than 7 times faster than in case of the AVR µC.  
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Fig. 4. Achievable maximum data rate of the WTA NN vs. number of neurons (for 3 inputs) for 
both microcontrollers 

The power dissipation of particular system components is shown in Fig. 5. This 
parameter has been measured for a full performance of the µCs, when the network oper-
ates at the highest possible data rate. Comparison of the results for the L1/L2 metrics 
shows that in the first case the achievable data rate is almost doubled for the same num-
ber of neurons, while the learning accuracy is maintained. This shows that elimination 
of the multipliers at least at the stage of the distance calculation is a good idea. 

Fig. 5. Estimated power dissipation of the WTA NN vs. the number of neurons for 3 inputs for 
both used microcontrollers 

Figure 6 presents selected measurement results of the network with 3 inputs and 4 
outputs realized using the ARM µC sampled at 400 kHz. The results are shown for two 
different settings of the learning process i.e. for the conscience mechanism being turned 
on (left) and off (right). When this mechanism was turned-off one of the neurons re-
mained inactive for presented input data.  
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Learning signals (X) – Example 1 Learning signals (X) – Example 2 

Neurons output signals – Example 1 Neurons output signals – Example 2 

Fig. 6. Selected measurement results of the WTA NN with 3 inputs and 4 outputs. Example 1: 
the conscience mechanism (Cons) is on; Example 2: the Cons block is off 

One of the objectives of this paper was the comparison of the implementation based 
on µC with the earlier analog realization. The analog NN with the same number of 
weights, sampled at 1 MHz, dissipated power of 700 µW. This is more than 500 times less 
than in case of the realization on the µCs. Taking into account also the sampling frequen-
cy, it can be demonstrated that the analog network can be even 1000 times more efficient. 
The main parameters of particular implementations have been collected in Table 1. 

Table 1. Comparison between different realizations of WTA NN 

 AVR/L1 AVR/L2 ARM/L1 ARM/L2 Analog/L2 PC 
P [mW] 310 310 390 390 0.7 2e04 

fS_max [kHz] 71 48 480 320 1000 1800 
FOM (fS /P) 0.23 0.15 1.23 0.82 1428 0.09 
device sizes 3x4 cm (board with one µC) 1 x 1.5 mm Large 
Price ( ) 40 (with one µC) 5 (long series) c. 300 

The results presented for the PC are estimated on the basis of the simulation results 
of the network model implemented in C++. If the NN is realized as ASIC or on the µC, 
as opposed to the PC based realizations, the power dissipation can be controlled in such 
a way to be approximately linearly dependent on the sampling frequency. This feature is 
an very important advantage, especially in the wearable systems, for example in Wire-
less Sensor Networks (WSN), which operate in environments with limited access to 
energy sources [18].  
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6. SUMMARY 

Two different hardware realizations of the Winner Takes All (WTA) Artificial 
Neural Network (NN) have been compared in the paper. One of them is an analog net-
work designed earlier by the authors in “full-custom” style in the CMOS 180 nm tech-
nology. The second implementation, proposed and described in this paper is based on 
two microcontrollers with the AVR and the ARM cores.  

Both microcontrollers are placed on a single testing board, together with the 
ADC/DAC blocks, the power supply block. This makes the board a fully autonomous 
system, with the built-in learning abilities. 

The measurement results of the prototype devices show that the µC-based imple-
mentation is even ten times more efficient than the PC-based realizations, considering 
such criteria as the achievable data rate vs. power dissipation. On the other hand the 
analog networks is thousand times more efficient than the µC-based network, occupying 
the area less than 1 mm2.

The main disadvantage of the full-custom, transistor level realization is relatively 
long design process and high fabrication costs in case of short series. The µC-based 
realization offers a low cost of the device, medium sizes and large flexibility. If only 
one µC will be used, e.g. with the ARM core, the cost will not exceed 40 Euro per 
piece. The overall device sizes of 3 x 4 cm, achievable in this case, make the proposed 
system suitable for various portable applications, including medical diagnostic tools.  

The WTA neural network presented in this paper is going to be used as a base sta-
tion in wireless body sensor network for the on-line analysis of various biomedical data. 
To enable such option the final device will be equipped with the filters for data prepro-
cessing and the wireless communication module to enable communication with the low 
power sensors placed on the patient’s body. The platform is still being developed. 
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PORÓWNANIE RÓ NYCH SPRZ TOWYCH REALIZACJI SZTUCZNEJ 
SIECI NEURONOWEJ TYPU WINNER TAKES ALL 

Streszczenie 

W pracy przedstawiono projekt oraz wyniki bada  laboratoryjnych sieci neuronowej 
Kohonena typu Winner Takes All (WTA) zaimplementowanej na mikrokontrolerach z 
rdzeniami AVR oraz ARM. W pracy przedstawiono te  porównanie z wcze niejsz
realizacj  podobnej sieci jako specjalizowany analogowy uk ad scalony. Dwa mikro-
kontrolery, na których zaimplementowano algorytm ucz cy umieszczone zosta y na 
jednej p ytce testowej aby umo liwi  bezpo rednie porównanie ich parametrów. Za 
pomoc  prze czników umieszczonych bezpo rednio na p ytce mo liwe jest wybranie 
jednego z mikrokontrolerów, jednej z dwóch miar podobie stwa mi dzy wektorami 
(Euklidesa L2 lub typu Manhattan L1) oraz w czenie lub wy czenie mechanizmu 
sumienia. Niektóre sygna y przedstawiaj ce proces uczenia (sygna u sygnalizuj cego 
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zwyci ski neuron) mo emy bezpo rednio obserwowa  na p ytce. Proces uczenia mo-
emy te  w ca o ci obserwowa  na komputerze PC, poprzez z cze USB. Do poten-
cjalnych zastosowa  wykonanej p ytki testowej oraz sprz towych realizacji sieci neu-
ronowej nale  systemy do ci g ego monitoringu zdrowia pacjentów (obserwacja oraz 
analiza sygna ów typu EKG oraz EMG), a tak e jako wyposa enie laboratorium stu-
denckiego. 

S owa kluczowe: sie  typu WTA, cyfrowe sieci neuronowe, analogowe sieci neuro-
nowe, mikrokontrolery, niski pobór energii 


