PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial distribution of radiogenic heat in the Iullemmeden basin – Precambrian basement transition zone, NW Nigeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The area which transcends the Precambrian basement complex onto the Sokoto sector of the Iullemmeden basin in northwestern Nigeria presents a unique prospect for geothermal exploration research in the absence of regional heat production data, despite its tectonic history and depositional characteristics. In this study, geophysical exploration employing radiometric technique was adopted to classify the petrologic units within the fringes of the Iullemmeden basin and the adjoining crystalline basement complex so as to estimate the radiogenic heat potential within the terrain that may support geothermal considerations. Airborne radiometric measurements acquired over the area were digitized and processed to obtain radioelement concentration maps and the K/Th/U ternary map. Results show that the ranges of measured concentrations of 40K, 238U and 232Th are 4.6 to 18.9%, 0.7 to 4.9 ppm and 4.6 to 18.9 ppm respectively. Radiogenic heat estimation derived from radioelement data within eight petrologic units comprising quaternary sediments, schist, carbonates, shale/clay, younger granites, older granites, gneissic rock and migmatite showed that the lowest radiogenic heat production estimates ranging from 0.27–0.66 µW∙m−3 were recorded in the sedimentary terrain within the quaternary sediments while the highest radiogenic heat production values of between 2.04 to 2.34 µW∙m−3 were recorded in the basement complex within gneissic rocks. The spatial distribution of radiogenic heat in the area showed an increased heat gradient within the basement complex and a diminishing heat gradient over the Iullemmeded basin.
Wydawca
Rocznik
Strony
239--250
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Federal University Birnin Kebbi, Department of Applied Geophysics; Birnin Kebbi, Nigeria
autor
  • Federal University Birnin Kebbi, Department of Applied Geophysics; Birnin Kebbi, Nigeria
Bibliografia
  • Abbady A., 2010. Evaluation of heat generation by radioactive decay of sedimentary rocks in Eastern Desert and Nile Valley, Egypt. Applied Radiation and Isotopes, 68, 10, 2010–2024.
  • Abbady A. & El-Arabi A.M., 2006. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert. Egypt. Applied Radiation and Isotopes, 64, 131–137.
  • Abbady G.E. & Al-Ghamdi A.H., 2018. Heat production rate from radioactive elements of granite rocks in north and southeastern Arabian Shield Kingdom of Saudi Arabia. Journal of Radiation Research and Applied Sciences, 11, 231–290. https://doi.org/10.1016/j.jrras.2018.03.002.
  • Adagunodo T.A., Bayowa O.G., Usikalu M.R. & Ojoawo A.I., 2019. Radiogenic heat production in the coastal plain sands of Ipokia, Dahomey Basin, Nigeria. MethodsX, 6, 1608–1616. https://doi.org/10.1016/j.mex.2019.07.006.
  • Ahmad A.A., 1998. Characteristics of aerial and ground radioactives of basement and sedimentary rocks in Egypt: Relations and natural cycle across geologic time. [in:] El-Mashri S.M. (ed.), Proceedings of the third Arab conference on the peaceful uses of atomic energy, Arab Atomic Energy Agency, Tunis, 153–184.
  • Aisabokhae J.E., 2019. Geophysical classification of the basement complex of Kebbi State, northwestern Nigeria. Department of Earth Sciences, Faculty of Science, Adekunle Ajasin University, Akungba, Nigeria [Ph.D. thesis].
  • Aisabokhae J.E. & Oresajo B., 2019. The magnetic response of hydrothermal alteration in iron-oxide basement complex, NW Nigeria. Geology, Geophysics and Environment, 45, 2, 145–156. http://dx.doi.org/10.7494/geol.2019.45.2.145.
  • Allan K.A., Abou B.A. & Taha, A., 2013. Dose assessment for natural radioactivity resulting from tiling granite rocks. Radiation Protection and Environment, 36, 3, 99–105. https://doi.org/10.4103/0972-0464.137471.
  • Amadi A.N., 2012. Radiometric survey as a useful tool in geological mapping of western Nigeria. Journal of Geography and Geology, 4, 1, 242–249. http://dx.doi.org/10.5539/jgg.v4nlp242.
  • Beamish D. & Busby J., 2016. The Cornubian geothermal province: heat production and flow in SW England: estimates from boreholes and airborne gamma-ray measurements. Geothermal Energy, 4, 4, 2–25. https://doi.org/10.1186/s40517-016-0046-8.
  • Bello S., Zakari Y.I., Muhammad B.G., Chiromawa N.L. & Saribu A.Y., 2016. Environmental radioactivity assessment of Dana steel limited dump site, Katsina State, Nigeria. Journal of Natural and Applied Science, 5, 2, 159–166.
  • Cermak V., Huckenholz H.G., Rybach L. & Schmid R., 1982. Radioactive heat generation in rocks. [in:] Hellwege K. (ed.), Landolt-Bornstein numerical data and functional relationships in science and technology. Sub-volume b. Physical Properties of Rocks, New Series; Group V, Geophysics and Space Research, Heidelberg, New York, 49–94.
  • Darnley A.G., 1973. Airborne gamma-ray survey techniques, present and future in uranium exploration methods. [in:] Uranium Exploration Methods: Proceedings of a Panel on Uranium Exploration Methods Held in Vienna 10–14 April 1972, Panel Proceedings Series, International Atomic Energy Agency, Vienna, 67–106.
  • Dentith M. & Mudge S.T., 2014. Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press, Cambridge.
  • Elkhadragy A.A., Abdelaziz A.M.S., Gharieb A.G.N. & El Husseiny A.A., 2016. The use of airborne spectrometric data in geological mapping and uranium exploration at Qena-Quseir Shear Zone Area, Eastern Desert, Egypt. Global Journal of Science Frontier Research in Environmental Earth Sciences, 16, 5, 1–21.
  • Fitches W.R., Ajibade A.C., Egbuniwe I.G., Holt R.W. & Wright J.B., 1985. Late Proterozoic schist belts and plutonism in NW Nigeria, Journal of Geological Society London, 142, 319–337.
  • Garba I., 2003. Geochemical characteristics of mesothermal gold mineralization in Pan-African (600 ± 150 Ma) basement of Nigeria. Applied Earth Science, 112, 319–325.
  • Gatis N., Luscombe D.J, Carless D., Parry L.E., Fyfe R.M., Harrod T.R., Brazier R.E. & Anderson K., 2019. Mapping upland peat depth using airborne radiometric and lidar survey data. Geoderma, 335, 78–87. https://doi.org/10.1016/j.geoderma.2018.07.041.
  • Gillespie M.R., Crane E.J. & Barron H.F., 2013. Deep geothermal energy potential in Scotland. British Geological Survey Agency commissioned report, CR/12/121, Keyworth, Nottingham, UK.
  • Girigisu S., Ibeanu G., Adeyemo D.J., Onoja R.A., Bappah I.A. & Okoh S., 2013. Assessment of radiological levels in soils from artisanal gold mining exercises at Awwal, Kebbi State, Nigeria. Research Journal of Applied Sciences, Engineering and Technology, 7, 14, 2899–2904. https://doi.org/10.19026/rjaset.7.618.
  • Huston D.L., 2010. An assessment of the uranium and geothermal potential of North Queensland. Geoscience Australia, Record 2010/14.
  • IAEA, 2003. Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363, International Atomic Energy Agency, Vienna, Austria.
  • Ibrahim U., Akpa T.C. & Daniel I.H., 2013. Assessment of radioactivity concentration in soil of some mining areas in Central Nasarawa State, Nigeria. Science World Journal, 8, 2, 7–12.
  • Kogbe C., 1979. Geology of the south-eastern sector of the Iullemmeden Basin. Bulletin of Department of Geology, Ahmadu Bello University, Zaria, 2, 1, 34–78.
  • Manger E.G., 1963. Porosity and Bulk Density of Sedimentary Rocks. Geological Survey Bulletin, 1144, United States Printing Office, Washington.
  • Middleton M.F., 2016. Radiogenic heat generation in Western Australia – Implication for geothermal energy. [in:] Ismail B.I. (ed.), Advances in Geothermal Energy, IntechOpen, 49–90. http://dx.doi.org/10.5772/61963.
  • Mukai M., Yamaguchi T., Komura K., Furumoto M. & Nagao T., 1999. Measurement of radioactive heat generation in rocks by means of gamma ray spectrometry. Proceedings of Japanese Academy, 75, 7, 181–185.
  • Norden B. & Forster A., 2006. Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the northeast German basin. AAPG Bulletin, 90, 6, 939–962. https://doi.org/10.1306/01250605100.
  • Ogezi A.E.O., 1977. Geochemistry and geochronology of basement rocks from northwestern Nigeria. Department of Geology, University of Leeds, United Kingdom [Ph.D. thesis].
  • Olasunkanmi N., Bamigboye O., Saminu O., Salawu N. & Bamidele T., 2020. Interpretation of high resolution aeromagnetic data of Kaoje and environ, western part of the Zuru schist belt, Nigeria: implication for Fe-Mn occurrence. Heliyon, 6, e03320, 1–10. https://doi.org/10.1016/j.heliyon.2020.e03320.
  • Rahaman M.A. 1988. Recent advances in the study of the basement complex of Nigeria. [in:] Oluyide P.O., Mbonu W.C., Ogezi A.E.O., Egbuniwe I.G., Ajibade A.C. & Umeji A.C. (eds.), Precambrian Geology of Nigeria, Geological Survey of Nigeria Publication, Kaduna, 11–43.
  • Ramadan T.M. & Abdel Fattah M.F., 2010. Characteristics of gold mineralization in Garin Hawal area, Kebbi State, NW Nigeria, using remote sensing. The Egyptian Journal of Remote Sensing and Space Science, 13, 153–163. https://doi.org/10.1016/j.ejrs.2009.08.001.
  • Rawlins B.G., Lark R.M. & Webster R., 2007. Understanding airborne radiometric survey signals across part of eastern England. Earth Surface Processes, 32, 1503–1515. https://doi.org/10.1002/esp.1468.
  • Reda A.Y., El Qassas M., Salaheldin S.M. & Assran T., Abdel Fattah A. & Rashed M.A., 2020. Airborne gamma-ray spectrometric data interpretation on Wadi Queih and Wadi Safaga area, Central Eastern Desert, Egypt. NRIAG Journal of Astronomy and Geophysics, 9, 1, 155–167. https://doi.org/10.1080/20909977.2020.1728893.
  • Rybach L., Werner D., Mueller S. & Berset G., 1977. Heat flow, heat production and crustal dynamics in the Central Alps, Switzerland. Tectonophysics, 41, 113–126.
  • Sabra M.E., Abdeldayem A.L., Youssef A.S., Masoud A.A. & Mansour S.A., 2019. Determination of the radiation dose rate and radiogenic heat production of North Gabal Abu Hibban area, central Eastern Desert, Egypt. NRIAG Journal of Astronomy and Geophysics, 8, 1, 103–111.
  • Salem A., Elsirafy A., Sachio E. & Ushijima K., 2005. Mapping radioactive heat production from airborne spectral gamma-ray data of Gebel Duwi area, Egypt. [in:] Proceedings of the World Geothermal Congress 2005: Antalya, Turkey, 24–29 April 2005. Geothermal energy, the domestic, renewable, green option, International Geothermal Association, Auckland, 1–6.
  • Samwell O., 2010. Radiometric survey and estimation of radiation exposure from Archean rocks: A case study of Migori gold belt company, Kenya. School of Pure and Applied Sciences, Kenyatta University, Kenya [M.Sc. thesis].
  • Saxov S. & Abrahamsen N., 1964. Some rock densities in Bornholm. Geologiska Foreningen Stockholm Forhandlinger, 86, 1, 83–95. https://doi.org/10.1080/11035897.1964.9626368.
  • Scott B.R., 2007. Health Risk Evaluations for Ingestion Exposure of Humans to Polonium-210. Dose-Response. Publication of International Hormesis Society, 5, 94–122.
  • Slagstad T., 2008. Radiogenic heat production of Archean to Permian geological provinces in Norway. Norwegian Journal of Geology, 88, 149–166.
  • Usikalu M.R., Rabiu A.B., Oyeyemi K.D., Achuka J.A. & Maaza M., 2017. Radiation hazard in soil from Ajaokuta, North Central, Nigeria. International Journal of Radiation Research, 15, 2, 219–224. https://doi.org/10.18869/acadpub.ijrr.15.2.219.
  • Vila M., Fernandez M. & Jimenez-Munt I., 2010. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modelling. Tectonophysics, 490, 152–164. https://doi.org/10.1016/j.tecto.2010.05.003.
  • Wang N., Xiao L., Li C., Huang Y., Pei S., Liu S., Xie F. & Cheng Y., 2005. Determination of radioactivity level of U, Th and K in surface medium in Zhuhai City by in-situ gamma-ray spectrometry. Journal of Nuclear Science and Technology, 42, 10, 888–896. https://doi.org/10.1080/1881124B.2005.9711040.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c593eec-90da-41bc-bf29-98d5930ca458
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.