Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper focuses on the problems of linear programming (LP) with generalized fuzzy numbers (GFNs) as coefficients of the objective function. It is necessary to characterize consistent arithmetic operations to lower the error and information loss compared to the minimum operator usage and normalization in cases where experts are not completely certain of their subjective opinions. The uncertainty is eliminated using the total cost as a loss function and credibilistic conditional value at risk (CVaR) minimization. To crispify and generate a GFN, we utilize a ranking function that allows us to consider risky realizations. By solving many deterministic problems with LP solvers, projections of the error in the objective function can be presented. To describe and implement our methodology, we mainly focus on network optimization problems, especially generalized fuzzy transportation, assignment, and shortest path problems.
Czasopismo
Rocznik
Tom
Strony
125--141
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Department of Mathematics, Giresun University, Giresun, Turkey
autor
- Naval Training and Education Command, Turkish Naval Forces, Kocaeli, Turkey
autor
- Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey
Bibliografia
- [1] Akdemir, H. G., and Kocken, H. G. New unified score functions and similarity measures for non-standard fuzzy numbers: an extended TOPSIS method addressing risk attitudes. Neural Computing and Applications 35, 19 (2023), 14029–14046.
- [2] Akdemir, H. G., Kocken, H. G., and Nurdan, K. On value-at-risk and conditional value-at-risk measures for intuitionistic and picture fuzzy losses. Journal of Multiple-Valued Logic and Soft Computing 41, 6 (2023), 583–617.
- [3] Anusuya, V., and Kavitha, R. Roulette ant wheel selection (RAWS) for genetic algorithm–fuzzy shortest path problem. International Journal of Mathematics and Computer Applications Research 5 (2015), 1–14.
- [4] Baltas, I., Dopierala, L., Kolodziejczyk, K., Szczepański, M., Weber, G.-W., and Yannacopoulos, A. N. Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty. European Journal of Operational Research 298, 3 (2022), 1162–1174.
- [5] Ban, A. I., Coroianu, L., and Grzegorzewski, P. Fuzzy Numbers: Approximations, Ranking and Applications. Polish Academy of Sciences, Warsaw, 2015.
- [6] Chen, S.-J., and Chen, S.-M. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE Transactions on Fuzzy Systems 11, 1 (2003), 45–56.
- [7] Dinagar, D. S., and Kamalanathan, S. A comparison of two new ranking methods on solving fuzzy assignment problem. Annals of Pure and Applied Mathematics 15, 2 (2017), 151–161.
- [8] Dubois, D., and Prade, H. An alternative approach to the handling of subnormal possibility distributions: – a critical comment on a proposal by Yager. Fuzzy Sets and Systems 24, 1 (1987), 123–126.
- [9] Ebrahimnejad, A. A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers. Applied Soft Computing 19 (2014), 171–176.
- [10] Gupta, A., Kumar, A., and Sharma, M. K. Applications of fuzzy linear programming with generalized LR flat fuzzy parameters. Fuzzy Information and Engineering 5 (2013), 475–492.
- [11] Islam, S., and Roy, T. K. A new fuzzy multi-objective programming: Entropy based geometric programming and its application of transportation problems. European Journal of Operational Research 173, 2 (2006), 387–404.
- [12] Kara, G., Özmen, A., and Weber, G.-W. Stability advances in robust portfolio optimization under parallelepiped uncertainty. Central European Journal of Operations Research 27, 1 (2019), 241–261.
- [13] Kaur, A., and Kumar, A. A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Applied Soft Computing 12, 3 (2012), 1201–1213.
- [14] Kumar, S. S., Raja, P., Shanmugasundram, P., and Thota, S. A new method to solving generalized fuzzy transportation problem-harmonic mean method. International Journal of Chemistry, Mathematics and Physics 4, 3 (2020), 51–56.
- [15] Kundu, P. Some transportation problems under uncertain environments. In Transactions on Rough Sets XIX (Berlin, 2015), J. F. Peters, A. Skowron, D. Sle¸zak, H. S. Nguyen and J. G. Bazan, Eds., vol. 8988 of ´ Lecture Notes in Computer Science, Springer, pp. 225–365.
- [16] Liou, T.-S., and Wang, M.-J. J. Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems 50, 3 (1992), 247–255.
- [17] Maheswari, P. U., Vidhya, V., and Ganesan, K. A modified method for finding initial basic feasible solution for fuzzy transportation problems involving generalized trapezoidal fuzzy numbers. In International Conference on Advances in Renewable and Sustainable Energy Systems (ICARSES 2020) 3rd-5th December, Chennai, India (2021), vol. 1130 of IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012063.
- [18] Mahmoodirad, A., and Sanei, M. An approximation method for fuzzy fixed-charge transportation problem. International Journal of Mathematical Modelling & Computations 8, 4 (2018), 259–267.
- [19] Mathur, N., and Srivastava, P. K. An inventive approach to optimize fuzzy transportation problem. International Journal of Mathematical, Engineering and Management Sciences 5, 5 (2020), 985–994.
- [20] Özmen, A., Kropat, E., and Weber, G.-W. Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty. Optimization 66, 12 (2017), 2135–2155.
- [21] Peng, J. Average value at risk in fuzzy risk analysis. In Fuzzy Information and Engineering Volume 2 (Berlin, 2009), B. Cao, T.-F. Li and C.-Y. Zhang, Eds., vol. 62 of Advances in Intelligent and Soft Computing, Springer, pp. 1303–1313.
- [22] Rao, P. P. B., and Shankar, N. R. Ranking generalized fuzzy numbers using area, mode, spreads and weights. International Journal of Applied Science and Engineering 10, 1 (2012), 41–57.
- [23] Rezvani, S. Ranking generalized trapezoidal fuzzy numbers with Euclidean distance by the incentre of Centroids. Mathematica Aeterna 3, 2 (2013), 103–114.
- [24] Rostam, K. J., and Haydar, S. S. Making the optimal decision for production by using the fuzzy linear programming method. Measurement: Sensors 24 (2022), 100559.
- [25] Samuel, A. E., and Raja, P. Zero division method for finding an optimal of generalized fuzzy transportation problems. Global Journal of Pure and Applied Mathematics 13, 12 (2017), 8157–8177.
- [26] Singh, G., and Singh, A. Extension of particle swarm optimization algorithm for solving transportation problem in fuzzy environment. Applied Soft Computing 110, C (2021), 107619.
- [27] Taylan, P., Weber, G.-W., Liu, L., and Yerlikaya-Özkurt, F. On the foundations of parameter estimation for generalized partial linear models with b-splines and continuous optimization. Computers & Mathematics with Applications 60, 1 (2010), 134–143.
- [28] Thorani, Y. L. P., and Shankar, N. R. Fuzzy assignment problem with generalized fuzzy numbers. Applied Mathematical Sciences 7, 71 (2013), 3511–3537.
- [29] Thota, S., and Raja, P. New method for finding an optimal solution of generalized fuzzy transportation problems. Asian Journal of Mathematical Sciences 4, 2 (2020), 19–24.
- [30] Valdés, L., Ariza, A., Allende, S. M., Triviño, A., and Joya, G. Search of the shortest path in a communication network with fuzzy cost functions. Symmetry 13, 8 (2021), 1534.
- [31] Vincent, F. Y., Chi, H. T. X., Dat, L. Q., Phuc, P. N. K., and Shen, C.-W. Ranking generalized fuzzy numbers in fuzzy decision making based on the left and right transfer coefficients and areas. Applied Mathematical Modelling 37, 16-17 (2013), 8106–8117.
- [32] Wang, J.-q., Nie, R., Zhang, H.-y., and Chen, X.-h. New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Information Sciences 251 (2013), 79–95.
- [33] Wang, Y.-M., Yang, J.-B., Xu, D.-L., and Chin, K.-S. On the centroids of fuzzy numbers. Fuzzy Sets and Systems 157, 7 (2006), 919–926.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c51e5e8-7272-4275-9a75-515e218f3a4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.