PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Selected Parameters on the Stabilization Efficiency of the Organic Fraction of Municipal Solid Waste (OFMSW) in the Mechanical and Biological Treatment Plant (MBT)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ wybranych czynników na efektywność procesu stabilizacji organicznej frakcji odpadów komunalnych (OFMSW) w zakładzie obróbki mechaniczno-biologicznej
Języki publikacji
EN
Abstrakty
EN
Composting is a natural process; however, many artificial factors have been developed to improve process efficiency for the organic fraction of municipal solid waste (OFMSW) stabilization in the mechanical-biological treatment (MBT) plant. The study aimed to assess the effect of aeration (X1), irrigation (X2), process time (X3) and turning frequency (X4) on OFMSW stabilization after the intensive degradation phase of compositing in a full-scale MBT plant. The four-factorial design on two levels with two replicates was used to the optimization of compost stabilization yield. Among analyzed factors, mechanical turning was found not to significantly influence the effect of stabilization. The achieved determination coefficient (R2) of 0.94 suggests an adequate representation of the process model and a good correlation between the experimental and predicted values. The achieved stabilization yield obtained in the control run was 47.5%, where the aeration (X1) was set up as blower working cycle: 10 minutes blowing and 5 minutes break, the irrigation level (X2) was set up for 10000 dm3/d and process was performed 4 weeks (X3).
PL
Kompostowanie to zachodzący naturalnie tlenowy proces biodegradacji wykorzystywany przemysłowo zwłaszcza do przetwarzania odpadów. Opracowano i określono wiele parametrów tego procesu w celu poprawy wydajności procesu stabilizacji frakcji organicznej odpadów komunalnych (OFMSW) w zakładzie obróbki mechaniczno-biologicznej (MBT). Niniejsza praca miała na celu ocenę wpływu napowietrzania (X1), nawadniania (X2), czasu trwania procesu (X3) i częstotliwości przewracania pryzmy (X4) na stabilizację OFMSW uzyskanej po intensywnej fazie kompostowania w zakładzie MBT. Do optymalizacji wydajności stabilizacji kompostu wykorzystano czteroczynnikowy plan eksperymentu (DOE) na dwóch poziomach z dwoma powtórzeniami. Stwierdzono, że mechaniczne przewracanie pryzmy nie ma statystycznie istotnego wpływu na efektywność stabilizacji. Osiągnięty współczynnik determinacji (R2) wynoszący 0,94 sugeruje odpowiednią reprezentację modelu procesu i dobrą korelację między wartościami eksperymentalnymi i przewidywanymi. Uzyskana wydajność stabilizacji uzyskana w przebiegu kontrolnym wyniosła 47,5%, przy ustawieniu czasów pracy wentylatora napowietrzania jako 10 minut działania i 5 minut przerwy (X1), nawadniania na poziomie 10 000 l/dobę (X2) i eksperymencie trwający, 4 tygodnie (X3).
Rocznik
Strony
316--329
Opis fizyczny
Bibliogr. 36 poz., tab., rys.
Twórcy
  • Wrocław University of Economics, Poland
  • Wrocław University of Economics, Poland
autor
  • Wrocław University of Economics, Poland
  • Wrocław University of Economics, Poland
Bibliografia
  • 1. Abdoli MA., Omrani G., Safa M., Samavat S. (2019). Comparison between aerated static piles and vermicomposting in producing co-compost from rural organic wastes and cow manure. International Journal of Environmental Science and Technology, 16, 1551-1562. doi: 10.1007/s13762-017-1607-5
  • 2. Anonymous (2009) Dewar Self-Heating Test. Instructions for use. Woods End Laboratory Inc.
  • 3. Baptista M., Antunes F., Gonçalves MS., et al. (2010). Composting kinetics in full-scale mechanical-biological treatment plants. Waste Management, 30, 1908-1921. doi: 10.1016/j.wasman.2010.04.027
  • 4. Barrena Gómez R., Vázquez Lima F., Sánchez Ferrer A. (2006). The use of respiration indices in the composting process: A review. Waste Management and Research 24, 7-47. doi: 10.1177/0734242X06062385
  • 5. Brinques GB., Do Carmo Peralba M., Ayub MAZ (2010). Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems. Journal of Industrial Microbiology and Biotechnology 37, 205-212. doi: 10.1007/s10295-009-0665-1
  • 6. Brinton WF, Evans E., Droffner ML, Brinton RB (1995). A Standardized Dewar Test for Evaluation of Compost Self-Heating. Biocycle, 36(11).
  • 7. Cerda A, Artola A., Font X., et al. (2017). Composting of food wastes: Status and challenges. Bioresource Technology 248, 57-67. doi: 10.1016/j.biortech. 2017.06.133
  • 8. Cesaro A., Russo L., Farina A., Belgiorno V. (2016). Organic fraction of municipal solid waste from mechanical selection: biological stabilization and recovery options. Environmental Science and Pollution Research, 23, 1565-1575. doi: 10.1007/s11356-015-5345-2
  • 9. Chauhan K., Trivedi U., Patel KC (2007). Statistical screening of medium components by Plackett-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresource Technology 98, 98-103. doi: 10.1016/j. biortech.2005.11.017
  • 10. Colón J, Ponsá S, Álvarez C, et al. (2017). Analysis of MSW full-scale facilities based on anaerobic digestion and/or composting using respiration indices as performance indicators. Bioresource Technology 236, 87-96. doi: 10.1016/j.biortech. 2017.03.172
  • 11. Dach J, Niżewski P, Jędruś A, Boniecki P (2007). Influence of aeration level on dynamic of sewage sludge composting process in bioreactor. Journal of Research and Applications in Agricultural Engineering 52, 68-72
  • 12. Fourti O (2013). The maturity tests during the composting of municipal solid wastes. Resources, Conservation and Recycling 72, 43-49. doi: 10.1016/j.resconrec. 2012.12.001
  • 13. Gea T, Ferrer P, Alvaro G, et al. (2007). Co-composting of sewage sludge: fats mixtures and characteristics of the lipases involved. Biochemical Engineering Journal 33, 275-283. doi: 10.1016/j.bej.2006.11.007
  • 14. Getahun T, Nigusie A, Entele T, et al. (2012). Effect of turning frequencies on composting biodegradable municipal solid waste quality. Resources, Conservation and Recycling 65, 79-84. doi: 10.1016/j.resconrec.2012.05.007
  • 15. Gutiérrez MC, Martín MA, Serrano A, Chica AF (2015). Monitoring of pile composting process of OFMSW at full scale and evaluation of odour emission impact. Journal of Environmental Management 151, 531-539
  • 16. Gutiérrez MC, Siles JA, Diz J, et al. (2017). Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions. Waste Management 59, 48-58. doi: 10.1016/j.wasman.2016.09.045
  • 17. Hamoda MF, Abu Qdais HA, Newham J (1998). Evaluation of municipal solid waste composting kinetics. Resources, Conservation and Recycling 23, 209-223. doi: 10.1016/S0921-3449(98)00021-4
  • 18. Huang YL, Sun ZY, Zhong XZ, et al. (2017). Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process. Waste Management 61, 206-212. doi: 10.1016/j.wasman.2017.01.007
  • 19. Iqbal MK, Nadeem A, Sherazi F, Khan RA (2015). Optimization of process parameters for kitchen waste composting by response surface methodology. International Journal of Environmental Science and Technology 12, 1759-1768. doi: 10.1007/s13762-014-0543-x
  • 20. Komilis D, Kontou I, Ntougias S (2011). A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Bioresource Technology 102, 5863-5872. doi: 10.1016/j.biortech.2011.02.021
  • 21. Li Z, Lu H, Ren L, He L (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere 93, 1247-1257. doi: 10.1016/j.chemosphere. 2013.06.064
  • 22. Ogunwande GA, Osunade JA, Adekalu KO, Ogunjimi LAO (2008). Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency. Bioresource Technology 99, 7495-7503. doi: 10.1016/j.biortech. 2008.02.020
  • 23. Oliveira LSBL, Oliveira DSBL, Bezerra BS, et al. (2017). Environmental analysis of organic waste treatment focusing on composting scenarios. Journal of Cleaner Production 155, 229-237. doi: 10.1016/j.jclepro.2016.08.093
  • 24. Onwosi CO, Igbokwe VC, Odimba JN, et al. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management 190, 140-157. doi: 10.1016/j.jenvman.2016.12.051
  • 25. Oviedo-Ocana ER, Torres-Lozada P, Marmolejo-Rebellon LF, et al. (2015). Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices. Waste Management 44, 63-71. doi: 10.1016/j.wasman.2015.07.034
  • 26. Petric I, Helic A, Avdic EA (2012). Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresource Technology 117, 107-116. doi: 10.1016/j.biortech. 2012.04.046
  • 27. Richard TL, (Bert) Hamelers HVM, Veeken A, Silva T (2002). Moisture Relationships in Composting Processes. Compost Science & Utilization 10, 286-302. doi:10. 1080/1065657X.2002.10702093
  • 28. Sadef Y, Poulsen TG, Bester K. (2015). Impact of compost process conditions on organic micro pollutant degradation during full scale composting. Waste Management 40:31-37
  • 29. Seruga P, Krzywonos M. (2015). Screening of medium components and process parameters for sugar beet molasses vinasse decolorization by Lactobacillus plantarum using Plackett-Burman experimental design. Polish Journal of Environmental Studies 24, 683-688. doi: 10.15244/pjoes/24931
  • 30. Sidełko R, Siebielska I, Janowska B, Skubała A. (2017). Assessment of biological stability of organic waste processed under aerobic conditions. Journal of Cleaner Production 164, 1563-1570. doi: 10.1016/j.jclepro.2017.07.035
  • 31. Siemiątkowski G (2014). Evaluation of the effectiveness of the process of mechanicalbiological treatment of waste with and without humidification. Scientific Works of Institute of Ceramics and Building Materials 21, 108-132.
  • 32. Skaggs RL, Coleman AM, Seiple TE, Milbrandt AR (2017). Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States. Renewable and Sustainable Energy Reviews 82, 2640-2651. doi: 10.1016/j.rser.2017.09.107
  • 33. Smith DC, Hughes JC (2004). Changes in maturity indicators during the degradation of organic wastes subjected to simple composting procedures. Biology and Fertility of Soils 39, 280-286. doi: 10.1007/s00374-003-0717-z
  • 34. Waszkielis KM, Wronowski R, Chlebus W, et al. (2013). Process kinetics of inoculation composting of municipal solid waste. Ecological Engineering 61:354-357. doi: 10.1016/j.ecoleng.2013.09.024
  • 35. Wei Y, Li J, Shi D, et al. (2017). Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resources, Conservation and Recycling 122, 51-65. doi: 10.1016/j.resconrec.2017.01.024
  • 36. Xi B, Zhang G, Liu H (2005). Process kinetics of inoculation composting of municipal solid waste. Journal of Hazardous Materials 124, 165-172. doi: 10.1016/j.jhazmat. 2005.04.026
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c5193c3-d66f-4494-a2d6-6c83f0aeaec7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.