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Abstract

Time dependent modelling of complex system is drib@important topics in system reliability engeniag.
Although system complexity is increasing, the emgstmodels are numerically satisfactory. Howevems
formal development is still lacking in reliabilitiieory. A full system time-dependency modelling andlysis
is not possible without some formal answers oncatfittransitions and related issues. This is st of the
open questions in system reliability theory. Somanpsing development relative to critical stategiigen in
this paper with an application case.

1. Introduction Models and algorithms that link between BBM and
SMB are lacking. However, we may find some
reliminary and promising works in [4], [5], [1] bu
ot exclusively.
The paper presents some original ideas towards
establishing formal links between these BBMs and
SBMs. It is a partial answer on the following

To carry out system time-dependence analyses, 0
should be able to describe the states and th
transitions of the system. When system analysts ar
more  interested in  describing  system’s
failure/success, they will naturally be orientedhe

use of the fault tree / reliability block type of question:

analysis. They will certainly make use of the Does a Boolean expression of a system

Boolean t(_ac'hnlques and prodyce cuts (minimal Oltailure/success contain information about the syste
not) describing the system failure/success. | would

call that Boolean Based Models (BBM). For aﬁrglecs Is(t)e;\tle:air}? é;ag)s(g:;z’.;’?

dynamic analysis needs based on fault tree analySi%:riticr;ll states are, by definitidn those stateergh
analysts may use some dynamic fault tree analysis Oonly one eIementa,ry transition ((’)ﬁ on) may result
dynamic reliability block diagram. This is the case in a system transition (oft on). Elementary
of some models / algorithms given in [3], [6]. A '

complete work on the Boolean Techniques intransmons are associated to the eIeme_n_tary
Reliability Theory is given in [9]. The BBMs components of the system. Elementary transitions

provide a complete description of all system are, by definition, binary (off/on) and independent
failure/success combinatory cuts That implies we have enough feedback experience

about these “elementary components” such that we

On the other hand, if the Analyst wants to analyze . . .
system transitions, he will be oriented a priori MY fully describe them by a failure ralg,(a repair

towards the use of State Based Models (SBM) sucidt® () and an initial unavailability yj. Many
as Markov, semi-Markov, ... or the use of €XPerts use the term “failure to start up probghiili
Simulation Based Techniques (SBT) such as Montefor V. as well.

Carlo, Petri-networks, Stochastic Petri Networks, ... o

. SBMs provide a complete description of the system?. System description

poss[b.le stat'es' including _crltlcal states andp system’s failure may be fully described by a
transitions. Thls_ is necessary in order to prodeed logical expression of the following type:

dynamic analysis.
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F =E+E,+ .. +E,1+E, Q) If the F describes the system’s failure, then, the
system (equivalent) failure rate will be defined as
Where, F is the set of all failure states and (A=Tg_¢) and its (equivalent) repair rate will be
[E,i=12,...,n] are given subsets of failure states. defined as [ =T _g). Subsequently, the system
These subsets may be minimal cuts or not, joint Olitself becomes binary and could be considered as

disjoint. They could also be any different kind of merely an elementary state belonging to another
sets. They may be directly deduced from a Faulimore complicated (macro) system.

Tree representation of the system failure. Instead of the absence of a consensus regarding the
Many logical ~expressions could equivalently concept of “system equivalent failure rate”, system
describe the system failutfe . modelling needs oblige reliability engineers to iise

The knowledge of the elementary stateseven if they do not use the title in order to asseasl
(failure/success) €,i=1212,...k] allows the engineering systems,[7], [8].

: : o This point of view is somehow close to the
COf?S'[I‘UC'[IOI’l _Of the failure SUbS?tE'LI =12....n] “Modular Approache” of Gulati in [6] and others.
which deSCflbt;? tflje f_sys_tem galltﬁ‘?—b Ifjlergentg_ry The system’s kinetic could then be schematically
states are, Dy definition, described Dy DINAry gagcrined as in figure (1) after replaciggb

functions (0/1=off/on) and defined by transition gure (1) placiqdby

rates (out/irg Tq qélréqq ). If g is defined as an

elementary failure state, then, the failure ratk lvd
defined as the transition rate to stal§  congequently, the system time-behavior will beyfull
(A :TE~Q ), the repair rate will be defined as the governed by the following differential-integral

_ equations system:
transition rate from state (,uzrQ ﬁa) and §

F anda by F .

will be defined as the complementary stategofthe i A(t) = —A(t).At) + ut)U(t) (2-a)
success state), sEgure 1. dt
Some authors, [2], give a different point of viev o

t+r

this concept “system equivalent failure rate”. VEhil - [A)0¢
the concept of “system equivalent repair rate” is Rt,7) =€ (2-b)
almost absent. '
t+r
- Ju(&).d¢
X S(t,7) =e (2-c)
in out Where, U is the system’s probability to be in the
E—— —— given stateF (set of failure states) and A is the
e E probability to be in the complementary (macro)estat
M F (success) at a given instant ‘. R is the

probability to last in the state F for the time

Figure 1. an elementang state defined by its interval [t,t +T] and S is the probability to last in
elementary transition rates into/out of its the complementary staté for the time interval
complementary state [t,t+r]. Al u are the (equivalent) transition rates
into/out of the failure staté& , respectively.
The stateF may also be fully described by its A, U, R, S, A and u could, then, be the
transition rates into/out of the complementaryestat  availability, the unavailability, the reliabilitythe
reparability, the failure rate and the repair m@ftéhe
ITe_¢). system, respectively.
- Generally, the problem is how to determine the
system transition rates A(, i), knowing the

F (T ¢

elementary states[,i = 12,...,k] and the definition
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of the system failures ,i=12,...,n] given in In the paper, a method is given in order to deteemi
equation (1) the critical states starting from the logical

. description of the failure (/success) of a given

Currently, the solution subsists very often in . .
: - . system. The demonstration of the method is not
constructing a graph of states and hopping that: given in the paper and wil be published

*  The number of states involved in the problem is:
limited mdependgntly.

. The transition rates between these states ark®t [8:1 =12,...K] b.e the elementary failure
constant (Markovian) or at least slowly varyinglwit events related to a given system. An elementary
the time (semi-Markovian). event has only two states (off/on) and the tramrsdti
Generally, reliability engineers and analysts sadce between these binary states are full-determined by
to find out handsome algorithms to come up with[( A,z ), i=212,....k] which are statistically
satisfactory numerical answers. measured.

However, formal links between the logical t the system failure F ) is described by a logical
expression of a set of states and the correspondlngxpressiOn as given in equation (1), the Modulus

transition rates (in/out) are lacking. " .
The link between the logical description of the M; of the critical states associated to the elemgntar

system failure, F,i=212...,n] given in  €vent ©) is determined by the intersection of two

equation(1), and the system transition rates gimen Subsets:
equations (2), may only be established through the o
determination of the corresponding critical states. M; = X, *Y, (3)

3. Critical states Where X; andY; are determined, respectively, by

The transition of a system, from succeds)(to  identification, using the following logical
failure (F) or vise-versa, occurs through some €Xpression:
given and well-defined critical states. The

determination of these critical states permits the Fe& = X
determination of the failure and repair rates & th

systemFigure 2. Fee =Yoo O-b

A critical state is a state in which the system may Lo

switch on(/off) by switching only one e'eme”t?‘.fy The method shows that the set of critical failure
state on(/off). Then, we have as many sets otatiti _

states as elementary events. statesE(g ) , will be given by:

D

#-a

)\ E(E) = g.' M (5-a)

—>

And the critical repair state&(g), will be given
by:

E(g) =e-M, (5-b)

Once the sets of critical events (failure/repamyén
been determined for the given system, we can then

write:
<
u Aohs =3 PlEE)] (6-3)
and,

Figure 2. Schematic representation of critical

transitions between the space S and F (S=Success, .

F=Failure) HU, =2 U .P[E(q )] (6-a)
i=1
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Where A, and U are the system availability and has been mentioned above, the most original part in
the method is the one about the determinationef th

set of critical states using the formal matheméatica
the elementary event (i), while P[E(q )] tools of the Boolean algebra.

andP[E(E,)J are the probability of being in the set of

critical repair states and in the set of criticaildre
states, respectively . Both system’s FailureR ) and system succesS]
Because of the binary aspect of the method, thgan be equally describedF and S are
system is either available (in operation) unavaglab complementary sets in the Boolean sense.

(in reparation). The equivalence “Availability = This is true as long aF and S hold for the
Operation” and “Unavailability = Reparation” may following properties:

be at disturbing, at the first glance, and givihg t

impression of something missing regarding FeS =0
engineering systems real life. That may result in ’
confusion in some situations. F+S=|
One of these potentially confusing situations can b

the one when the system is in a standby phase. IOVh ug d 4 the loaical i
this case, the system is available but not in. ere . an i are e_ ogical operators
operation. It is not operating but not in repanatio ntersection and union, respectivel@ and | are
neither. the empty and universal sets, respectively.
However, this still could be treated by distingigh ~ We Wil use the system success expressinThe
different phases in real operating life of a givenSUCCess of a system in a configuration of (n-1)/n
system. In a passive standby phase, when a givefctive redundancy may be expressed by:

system does not fail and is not in reparation, the

system may still be defined in this phase by its

unavailability, A4 and £ are the transitions rates of

4.1. System state logical expression

failure and repair rates such that: S=[e-ec g ec.e, 6]
+larece e e, 0]
As= s =0 +lere,ceec.ce e ]

+ . . o e eopQ e en
Where, the logical description of the critical stat [e1e2e3e5 .......... ¥ 1] .........

will still be valid. T
Our main objective is rather to apply the method tlrececer g q]

than to demonstrate it. We have chosen an tlece e e ce,] (7
application case whose results could be obtained by

other methods (graph state). That would allow bette Where e is an elementary event describing the

appreciating the original added-value of the methodg,.cess of the elementary component belonging to
and its real potentials for complex system analysis 4 system. Elementary events are independent, by
Before leaving this section, it is worth to undeeli  yafinition.

_that the method to deterr_nine the criti_cal states isrpeq system’s success is logically described in
independent on the logical expression used (Gyqation (7) using the success minimal cuts. ldstea
describe the system. Analysts may indifferently use,q prefer to put it in the form of disjoint cut set
the logical expression of success as well as th‘?egarding our immediate need to calculate the

logical expression of failure. system availability ‘A’. To carry out the
An active redundancy of the type (N-1)/N has beenyanstormation of the minimal (joint) cuts to disjp

s:elected. A specific atte_ntion is paid to the gyste (but not minimal) cuts, we may proceed in the
time-dependency analysis. following way. Using a reduced expression of the

. system success, equation (7) may be written as:
4. (N-1)/N activeredundancy

In the following sections, we will be interested in S= E+E,+E,+ ..+E ,+E, (8)
making a study case in order to illustrate some+tim

dependant characteristics in a relatively complexyhere {E;,i=1,2, ..., n} are any type of cut sets. In
system.

order to construct an expression of the system

We propose an (N-1)/N active redundancy type Ofrsuccess using disjoint cut sets, one may then

systems. The generalization of the method to othe
types of complex systems is straight forward. As it
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rearrange the above expression in the followingFollowing the proposed method, lets determine the
manner: critical set corresponding to the elementary event

_ . g, as following:
S= E+E,*E,+E,*E,*E,+ ...
See=[er e eeee.0e 0]

"ﬁf) ' En-1+(ﬁf)°En ©) tlare e e e . e,g]
tlegrere e et g 0g]
(For full description on Boolean expressions and t[ere e g0, 0]
function handling see [3]) I
Express!ons (8) a_nd (9) are _equivalent. Moreover, +[grece e rec.0e ve ]
there exists n! equivalent possible expressions. tlacocpeaeae o o

The expressing in Equation (7) could, then, be (6666 & .26, 6]

written as following:

Sz[eZ.e\’a.e4.e5."'.en—l.en] +[e2.e3.e4.e5."'.en—l.en]
tleee e e g.0e 8] +t[e,ce e8¢0 ,08]
tleee e e g.re 8] +t[e,ce g 8008 ,08]

+[el.e2.ee'.e_4.e5.___.en_l.en] ....................................................

tlerece e a0, 0] tle,ce e e . ce, 6]
tlarececeree.ce, ce]  (10) =acX

That allows immediately describing the system By identification, X, can be defined as:
availability A by:
X=le e e e e, ]
+ [e_2°e3°e4'e5""°en—1°en]
]] (11) +[ez°€°e4'e5""° e.°el

j#l

Asz[EA +§UI.[!§|1AJ.

tle,ce,0e,06°...0e ¢ ]

Where A and UI are the avallablllty and the ...................................................

unavailability of the elementary components, AR i]

respectively. They obey the differential equation +tle,cecece..0e €] (13)
system given in (2). If all elementary events are

identical (same transition rates and initial coodit,  Secondly, one should calculate the modulus relative
one may replacéy andU; by A andU . Equation {4 he evenE_L as following:

(11) will become:

S'a :E'{[e2°e3°e4'e5""°en—1°en]

= A" 1+ (n-1U 12 —

A [ ( ) ] (12) t[ere e g0, 0]
4.2. Critical states tlecerecerer.ce,06]
Our objective now is to determine the n sets of + ...... . ..... ... ..... ....... . .......
critical states corresponding to the n elementary (&€ 806 6006, i]
events. These sets are necessary to determine the +[ece,ce e ce..0e %€ [}

system transition rates.

S°€= a’[ez'ea°e4'es""' en—Z.en—l.en]
=€.Yl
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By identification,Y, may be defined as:

Y:L: [e2°e3°e4°e5°...° en—Z.en—l.en] (14)

The modulusM, of the critical sets corresponding

to the elementary eveﬁ is then:

P[Ee)] = Al(n-1)U.A™?] (18)

So, we can determine the second term in equation
(6-a):

é/‘i-P[E(e. )] = iZ;/\i.P[E(eI)]

M,= X, Y, =[An(n-yu.A™] (19)
={le,*e,0 606006, ¢] S ]
+tlere e e .00 e ] Considering equations (6-a), (10) and (17), we may
2 % v i determine the overall failure rate of the system as
+ [e2°e3°e4'e5' *€.°€ ] following:
tle,ce0g 6.0 0]

tle,cece,060...

tlerecece-..

ALA = A A1+ (n-1U]

= [An(n-nu.Am]

‘lerece e e, e, e That gives :
Finally, -
Y A= | 2.0 ZDY (20)
_ [L+(n-1U]
M,=[e,ceee°. e €]
tle,c e .0 06] Where A is the failure rate of the elementary
+le,ve - _4. ec.re €] component, andJ is its unavailability.U obeys

tle,ree e (15)

equation (2-a) whose solution gives (for constant
transition rates):

- A

yE [1_ e—uw)t] ¥y

U (21)

M, is the modulus of the set of the critical states

associated to elementary evesf. One should Where, A, pand y are a constant failure rate, a
repeat the same procedure [Equations 13,14,15] téonstant repair rate and an initial condition

obtain the other modulus{M,,i=23..nf  (¥=U(0)).
associated to all other elementary eventsConsidering Equations (21) and (20) leads to the
{e,i = 2,3,...,n}. conclusion that: “Although the elementary failure

ratesA’s do not depend on time, the overall system

4.3. System transition rate failure rateAg shows time dependency.”

Secondly, the system overall failure ratg depends
not only on the elementary failure ratds but also

According to equation (5-a), the set of the crltica
failure states associated to the elementary e\@nt (

is then: on the elementary repair rateg/, via the
unavailabilityU , as well as the initial conditions via
E(g) =g°*M, (16) the failure to start-up probabilitigs.

The same procedure can also be used to determine a
system overall repair rate. The demarche is idahtic
and straight forward starting from equation (1@gaf
having replaced the critical failure states by the
critical repair states associated to the elementary

And the probability of this set of events is equeal
PE()] = Ple.+ M.] = Ple].P[M,] (17)
As, the elementary events were supposed alEvents §).

identical (transition rates and initial conditiotf)us An exhaustive analysis of the method is out of the
scope of this paper. The author limits the
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presentation to the use of the system overallailu Where A, () and A, (t) are the system
rate and the system overall unavailability in ortter availability with and without the [(n-1)/n]

demonst'rate some interesting aspects related to thr%dundancy. Substituting equations (12) and (22) in
system time-dependency. equation (24), we get:

We may conceive a wide range of indicators that q ' get

should allow wus judging and assessing the

attractiveness of a given (n-1)/n redundancy. We G(0) = A1+ (n-Yu] - A™

will introduce only two indicators and examine with

some details their time behaviour. An-DU).A"(t) (25)

5. Redundancy benefits Figure 3 illustrates how this gain in system

Different measures of benefits can be conceived irfvailability varies with the elementary component
order to assess the real interest of a giverpnavailability and with the degree of the redunganc
redundancy. of the system.

If there were no redundancy, the system could have

been composed of only (n-1) identical elementary| o«

items. These elementary items will be connected by |

an OR gate. That means that without this type of ol

redundancy, the system’s availabilityA{) and ’

failure rate (Is) would have been, respectively, . ' / f )(\ —
equal to: 8 !’ \/\ \ i

| /
0= AT 22
A @ | S AN

Aso= (N=1). (23) e e | N4

1E-04 1E-03 1,E-02 1E-01 1E+00

unavailability

Where A and A are those of the elementary failure — . o
events. The elementary failure ralemay have any Figure3. Increase in system overall availability
time-dependant form. versus elementary component unavailability

Equations (22) and (23) provide us with reference . _ _
values for the system availability and the systemMany interesting aspects deserve to be underlined.
overall failure rate. First of all, it is worthy observing that the gdactor

Thus, we may conceive some indicators to allow(®) iS always positive and becomes null if and only

assessing the attractiveness of a given redundancy/. t'he. elementary unavailability is null or equal t
We will limit our analysis in this paper to two UNIY:

indicators:
» Availability Gain indicator, and lim G(t) = lim (n-YU).A"(t) - 0 (26)
» Failure Reduction Factor indicator U-o0 U-o0

One recalls that our main objective is not to depel u-1 U-1

indicators measuring the interest of a redundanty b

to assess the inter-dependency of these indicator5hus; itis not possible to loose in system avalitgb
and their time-dependency. if one uses an active redundancy with independent

elementary events. Active redundancy is useless
(G=0) if the elementary unavailability is null drit

is equal to unity.

One way to evaluate the interest of using a giverThe second remark is that the absolute gain in
[(n-1)/n] active redundancy may be to calculate thesystem availability depends on the elementary
absolute gain increase (G) in system availability,unavailability. This dependency has maximum

5.1. Availability gain

such as: values. Higher is the order of the redundancy, drigh
is the maximum gain in system availability. In the
G()= A () - Aso(t) (24)  case of a 1/2 active redundancy, the system attends

its maximum gain (0.25) when the elementary
unavailability is around 0.50. While, at 19/20
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redundancy, the maximum gain (0.36) is obtained a#At very high order of redundancy, the reduction
0.05 elementary unavailability. factor is almost equal to 1, which is not attraetin
Third, systems with highly probable elementary terms of gain in reliability:

failures (> 0.5) would show higher gain factor if

they have lower order active redundancy. The gain L nU

factor is 0.25 in the case of 1/2 redundancy a6é 0. foo™ r!'inoo W -1 (28)

in the case of 5/6 redundancy, both at elementary

failure probability as high as 0.52. . _
While the systems, with very low elementary The.best reduction factorf(.— 0) can only pe
unavailability, would show higher gain factor at obtained for systems containing perfectly available
higher order of redundancy. For an elementaryelementary componentsU[=0, On;(n0{23..})],
unavailability of the order of 0.01, 19/20 active independently from the degree of redundancy. It
redundancy shows a gain of the order of 0.16 whilemeans that redundancy degree does not impact on
1/2 redundancy shows a gain of only 0.01. the system failure (reliability). Practically, if
Forth, the active redundancy looses interest aklementary components are always available, then
extreme values of elementary unavailability no-need to use redundancy.

(U - 0, andU - 1). This could be the case of
industrial systems containing components whose o
failure rates are very small while repair rates are
high. That results in very low elementary-failure
probabilities. Or, that could also the case of
industrial systems with components having very
high failure rates and very small repair rates.tTha
would result in very high elementary-failure
probabilities.

Finally, it is important to underline that whatevke
exact values of failure and repair rates of elemrgnt
components in a given systems, the elementary

0,1000 F

— - =5/6

g 19/20

0,0100

.
A
'
. d —112
e

failure reduction factore

\‘ ‘
N
\
N
\\

failure (/elementary-success) probabilities evdlve
time with accordance to equations (2). That meang unavalabilty

that the gain in availability evolves with the tipfer

a given system. Figure 4. Failure rate reduction facture versus

elementary unavailability

5.2. System failurerate reduction factor _
One may thus describef(= 0) as the strongest

Another type of_analyses can alsq b_e_ carried MNeduction factor and (= 1) as the weakest
based on the notion of the gain in reliability. ,

How much does one gain in reliability using an [(n- "€duction factor.

1)/n] redundancy, with independent components?On€ observes also that for the same level of
One way to answer is to consider that one gains ifelementary unavailabilityFigure 3, one has stronger

reliability as much as one decreases the elementaryeduction factor at lower redundancy. It is very
failure rate? That is certainly correct even if the mportant to underline this aspect that higheris t

correspondence is not directly proportional. redundancy degree lower is the reduction factor,

We may define a failure rate reduction factdr)(as independently of the elementary unavailability.

follows: 6. System ageing
A nU Examining equation (20) results in the conclusion
f=-— B _ (27) that the system overall failure rate is time-degamnd
(-9 {1+ (n-1] | | |
even if the elementary-failure rates are not. Tiis
_ mainly due to the fact that the system overalufail
Where A and [(n—l))l] are the system failure rates q depends on the elementary unavailabilidy)

with and without the redundancy, respectively. as well. We know thalJ obeys the differential

Figure 4 illustrates the variation of the reduction equation (2) and subsequently, is dependent on time
factor (f) as a function of the elementary we may recall that:

unavailability and the degree of the system
redundancy. Many aspects may be underlined.
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B-1

«  the system is ageing if;,il—t)ls >0, A= E(LJ
n\n
. the system is time-independentﬂ—,/lS =0,
dt Substituting in equation (18), the system overall

. the system is regeneratingig—/l <0 failure rate will then be equal to:
dt °

One should und d this ( ic) behaviour i A(t)—[ﬁ nn-DY }
ne should understand this (systemic) behaviour in 4s{l)= -[ﬁ_
its functional sense. 1+(n-1u

To illustrate this effect, we recall equation (18):

&
=£(lj‘“ nn-D.0-e ") g
42| 4 ntn-nu n\n _L]‘*
ST+ (n-u] 1+(n-H@d-e ")
And consider the case where a given system

composed of [(n-1)/n] identical time-independent _ _
components. Let the elementary unavailability Equation (30) shows the time dependency of the

U (t) varies in such a way that: system overall failure rate in the case of non-
reparable elementary element with Weibull-like
U (0)= 0, and failure rate.

Again, we observe that redundancy slow efficiently
the system aging for small ‘' and small ‘n'.
Ut -o) -1 However, it looses its efficiency when ‘n’ and ‘t’
increase.
That gives the following results:

7. Maintenance and ageing

t:%: 0, and We have examined the impact of the elementary-
failure rate (1) and the degree of redundanay)(

A - (n-1A (29)  onthe system failureAg) time-dependency.

toe In this section, the impact of the elementary-falu

babilit il b ined.U ob th
Under the above hypothesis, the system behaves %fcf)esanltlia)lll egl(-qju)at\iltvjlns g?vsr)w(?rrln g)e obeys the

if its failure rate evolves from zero t{:(n—l)/l],

while A is time-independent. What is even more (¢
interesting, is thatd, is proportional ton, whenn EA =-AA+puU

to0
is relatively high. That is to say, highly reduntian
systems age faster. That would equally means thalf 4 (elementary failure rate) angt (elementary
in practice and in a given complex system, if repair rate) are time-independent, then:
elementary components do not show ageing, it is not
enough to conclude that the system itself does not
age. Complex systems should be analysed and
observed through functional specifications not only
physical ones. Where:
One more interesting case could be for a system wit ’
[(n-1)/n] actively redundant elementary non- U 1)
reparable components with Weibull-type elementary '/ ~ V.
failure rate. 1
In that case, the elementary unavailability and ue - SRy (31)

failure rateA will be given by:

A
U@tz — @1+ e—(/‘ﬂl)t + .e‘“*”’t
©=- +ﬂ( )+

p Accordingly and considering equation (20), one may
U=1 e—[i] identify three possible situations:
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failure rate is an intrinsic property of the elernzn

A +ﬂ; which means that) (t) increases component, so the only way to decrease it is to
T . _— replace periodically the elementary component by a

with time and Ag increases with time, as well. o e

Subsequently the system ages. This is exactly what operators do in order to invero

the reliability of their complex systems. They
elaborate their maintenance strategy upon 2 basic
with time and subsequently the system is time-?Ct'OnS_: I t o bl

: . mproving elementary component’s reparability,
independent. Subsequents is constant which is translated by increasing the elementary
. which means that) (t) decreases component repair rate ) through periodic
A+u maintenance, and/or

with time andAg decreases with time. Subsequently Improving elementary component's failure, which is
the system generates. translated by decreasing the elementary component

There are different ways to read the above threddilure rate @) through regular standard
situations from maintenance point of view, under th 'eplacement of the elementary component(s).
light of equation (20).

e y= L; which means that (t) is constant
A+u

° y>

8. Conclusion

t - . 1_y
The T'situation reflects the case whe#l/é@ y ) In spite of the obvious progress in the system

i.e. the elementary components are under-maintainefgliability theory during the past decades, somenop
or non-reparable. The elementary-repair rates aréuestions do still need development. One of these
small compared to the elementary-failure rates.OPen questions concerns the determination of
Improvement in maintenance would slowdown the COMPplex systems critical states and transitions.
system ageing. Very often, analysts and reliability engineers use
The 29 situation reflects the case where 9raphical tools when they are interested in anadysi
g 1-y. . system states and transitions. Once the graph of
(= =—=), i.e. the elementary components arestates in constructed and the critical transitians

2 o identified, they use Markovian (/semi-Markovian)
enough-maintained. _ _ tool to carry out the assessment.

The elementary-repair rate is proportional to theHowever, they will react differently, if they would
elementary-success probability && 0. That is to  |ike to analyse system failure modes and events
say, regarding the elementary component, moreaking into account interdependencies between

successfully it starts up lower the maintenance itdifferent sets of elementary components failures.
receives, and vice-versa. In all cases, maintensnce They will rather use fault tree analyses and

efficient enough to rend the system time- gssociated Boolean tools.

independent. Our question was:

The &' situation reflects the case where “Dg Boolean expressions of system failure contain
any information about systems critical states and
transitions?” If yes, “How can it be extracted?”

over-maintained. The elementary-repair rate iseeith | he author reports on a small but promising pragres
too high compared to the elementary failure rate ofowards an answer. The author believes that
one maintains a component that never shows failuré&Stablishing a link between states graph-type of
(1 - 0). We have a good maintenance margin. presentations and Boolean failure cut sets would
In these three situations, we are guided by Equatio®P€N @ promising prospective in the system
(20) that describes the system overall failure.rime  "eliability theory, especially, dynamic reliability

the all situations we considered the elementary® VEry rapid presentation of the method has been
failure rate as intrinsic to the elementary compose done. An application on [(n-1)/n] active-redundancy
and used the maintenanceu) as a means to system is carried out in order to allow the

. - appreciation of the method.
improve elementary component unavall_ablllty andThe author has stressed on the behaviour of the
consequently the system overall failure rate.

. . . system overall failure rate with the time.
Increasing () obviously improves system
reliability.
One may also reproduce the same effect on the
system overall failure rate through decreasing the
elementary failure rate A). As the elementary

(§>1_—y), i.e. the elementary components are
4
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