PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the application of different homogeneous ensemble learning methods to perform multi-class classification of respiratory diseases. The case sample involved a total of 215 subjects and consisted of 308 clinically acquired lung sound recordings and 1176 recordings obtained from the ICBHI Challenge database. These recordings corresponded to a wide range of conditions including healthy, asthma, pneumonia, heart failure, bronchiectasis or bronchitis, and chronic obstructive pulmonary disease. Feature representation of the lung sound signals was based on Shannon entropy, logarithmic energy entropy, and spectrogram-based spectral entropy. Decision trees and discriminant classifiers were employed as base learners to build bootstrap aggregation and adaptive boosting ensembles. The optimal structure of the investigated ensemble models was identified through Bayesian hyperparameter optimization and was then compared to typical classifiers in literature. Experimental results showed that boosted decision trees provided the best overall accuracy, sensitivity, specificity, F1-score, and Cohen's kappa coefficient of 98.27%, 95.28%, 98.9%, 93.61%, and 92.28%, respectively. Among the baseline methods, SVM provided the best yet a slightly poorer performance, as demonstrated by its average accuracy (98.20%), sensitivity (91.5%), and specificity (98.55%). Despite their simplicity, the investigated ensemble classification methods exhibited a promising performance for detecting a wide range of respiratory disease conditions. The data fusion approach provides a promising insight into an alternative and more suitable solution to reduce the effect of imbalanced data for clinical applications in general and respiratory sound analysis studies in specific.
Twórcy
autor
  • Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan
  • Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
  • Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan
  • Department of Internal Medicine, Jordan University of Science and Technology, Irbid, Jordan
  • Department of Internal Medicine, Jordan University of Science and Technology, Irbid, Jordan
  • Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
Bibliografia
  • [1] Bousquet JNGK. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. Geneva: World Health Organization; 2007. p. c2007.
  • [2] Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLOS Med 2006;3:1–20.
  • [3] Sarkar M, Madabhavi I, Niranjan N, Dogra M. Auscultation of the respiratory system. Ann Thorac Med 2015;10:158.
  • [4] Andrès E, Gass R, Charloux A, Brandt C, Hentzler A. Respiratory sound analysis in the era of evidence-based medicine and the world of medicine 2.0. J Med Life 2018;11:89.
  • [5] Pramono RXA, Imtiaz SA, Rodriguez-Villegas E. Evaluation of features for classification of wheezes and normal respiratory sounds. PLOS ONE 2019;14:e0213659.
  • [6] Pasterkamp H, Kraman SS, Wodicka GR. Respiratory sounds: advances beyond the stethoscope. Am J Respir Crit Care Med 1997;156:974–87.
  • [7] Reichert S, Gass R, Brandt C, Andrès E. Analysis of respiratory sounds: state of the art. Clin Med Circ Respir Pulmon Med 2008;2. CCRPM-S530.
  • [8] Shi L, Du K, Zhang C, Ma H, Yan W. Lung sound recognition algorithm based on vggish-bigru. IEEE Access 2019;7:139438–49.
  • [9] Naves R, Barbosa BH, Ferreira DD. Classification of lung sounds using higher-order statistics: a divide-and-conquer approach. Comput Methods Programs Biomed 2016;129:12–20.
  • [10] Acharya J, Basu A, Ser W. Feature extraction techniques for low-power ambulatory wheeze detection wearables. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2017. p. 4574-7.
  • [11] Gautam N, Pokle S. Wavelet scalogram analysis of phonopulmonographic signals. Int J Med Eng Informatics 2013;5:245–52. http://dx.doi.org/10.1504/IJMEI.2013.055700.
  • [12] Kahya YP, Yeginer M, Bilgic B. Classifying respiratory sounds with different feature sets. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006;2856–9.
  • [13] Orjuela-Ca nón Alvaro D, Gómez-Cajas Diego F, Jiménez- Moreno Robinson. Artificial neural networks for acoustic lung signals classification. Ibero-American Congress on Pattern Recognition 2014;214–21.
  • [14] Serbes G, Sakar CO, Kahya YP, Aydin N. Pulmonary crackle detection using time-frequency and time-scale analysis. Dig Signal Process 2013;23:1012–21.
  • [15] Bahoura M. Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes. Comput Biol Med 2009;39:824–43.
  • [16] Jin F, Sattar F, Goh DY. New approaches for spectro-temporal feature extraction with applications to respiratory sound classification. Neurocomputing 2014;123:362–71.
  • [17] Aykanat M, Kiliç Ö, Kurt B, Saryal S. Classification of lung sounds using convolutional neural networks. EURASIP J Image Video Process 2017;1–9.
  • [18] Messner E, Fediuk M, Swatek P, Scheidl S, Smolle-Juettner F, Olschewski H, et al. Multi-channel lung sound classification with convolutional recurrent neural networks. Comput Biol Med 2020;122:103831.
  • [19] Bokov P, Mahut B, Flaud P, Delclaux C. Wheezing recognition algorithm using recordings of respiratory sounds at the mouth in a pediatric population. Comput Biol Med 2016;70:40–50.
  • [20] Oweis R, Abdulhay E, Khayal A, Awad A. An alternative respiratory sounds classification system utilizing artificial neural networks. Biomed J 2014;38.
  • [21] Lin BS, Wu HD, Chen S. Automatic wheezing detection based on signal processing of spectrogram and back-propagation neural network. J Healthc Eng 2015;6:649–57.
  • [22] Riella R, Nohama P, Maia J. Method for automatic detection of wheezing in lung sounds. Braz J Med Biol Res 2009;42:674–84.
  • [23] Zhang K, Wang X, Han F, Zhao H. The detection of crackles based on mathematical morphology in spectrogram analysis. Technol Health Care: Off J Eur Soc Eng Med 2015;23:89–94.
  • [24] Serbes G, Sakar CO, Kahya YP, Aydin N. Pulmonary crackle detection using timeâfrequency and time scale analysis. Dig Signal Process 2013;23:1012–21.
  • [25] Xavier G, Melo-Silva C, Gaio E, Amado V. Accuracy of chest auscultation in detecting abnormal respiratory mechanics in the immediate postoperative period after cardiac surgery. J Bras Pneumol 2019;45. http://dx.doi.org/10.1590/1806-3713/e20180032.
  • [26] Perna D. Convolutional neural networks learning from respiratory data. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2018;2109–13.
  • [27] Islam MA, Bandyopadhyaya I, Bhattacharyya P, Saha G. Multichannel lung sound analysis for asthma detection. Comput Methods Programs Biomed 2018;159:111–23.
  • [28] García-Ordás M, Benítez Andrades J, García I, Benavides C, Alaiz Moreton H. Detecting respiratory pathologies using convolutional neural networks and variational autoencoders for unbalancing data. Sensors 2020;20.
  • [29] Basu V, Rana S. Respiratory diseases recognition through respiratory sound with the help of deep neural network. 2020 4th International Conference on Computational Intelligence and Networks (CINE) 2020;1–6.
  • [30] Rocha B, Filos D, Mendes L, Vogiatzis I, Perantoni E, Kaimakamis E, et al. A respiratory sound database for the development of automated classification. International Conference on Biomedical and Health Informatics 2017;33–7.
  • [31] Andrès E, Gass R, Charloux A, Brandt C, Hentzler A. Respiratory sound analysis in the era of evidence-based medicine and the world of medicine 2.0. J Med Life 2018;11:89–106.
  • [32] Nuckowska M, Gruszecki M, Kot J, Wolf J, Guminski W, Frydrychowski A, et al. Impact of slow breathing on the blood pressure and subarachnoid space width oscillations in humans. Sci Rep 2019;9:1–13.
  • [33] Lapi S, Lavorini F, Borgioli G, Calzolai M, Fontana G. Respiratory rate assessments using a dual-accelerometer device. Respir Physiol Neurobiol 2014;191:60–6.
  • [34] Zhang W, Lei W, Xu X, Xing X. Improved music genre classification with convolutional neural networks. Interspeech 2016 2016;3304–8.
  • [35] Chen Q, Zhang W, Tian X, Zhang X, Chen S, Lei W. Automatic heart and lung sounds classification using convolutional neural networks. 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) 2016;1–4.
  • [36] Shannon CE. A mathematical theory of communication. Bell Syst Techn J 1948;27:379–423.
  • [37] Aydin S, Saraoglu HSK. Log energy entropy-based eeg classification with multilayer neural networks in seizure. Ann Biomed Eng 2009;37:2626–30.
  • [38] Helakari H, Kananen J, Huotari N, Raitamaa L, Tuovinen T, Borchardt V, et al. Spectral entropy indicates electrophysiological and hemodynamic changes in drug-resistant epilepsy a ‘‘a multimodal mreg study. NeuroImage: Clin 2019;22:1–12.
  • [39] Vanluchene AL, Vereecke H, Thas O, Mortier EP, Shafer SL, Struys MM. Spectral entropy as an electroencephalographic measure of anesthetic drug effect: a comparison with bispectral index and processed midlatency auditory evoked response. Anesthesiology 2004;101:34–42.
  • [40] He K, Meeden G. Selecting the number of bins in a histogram: a decision theoretic approach. J Stat Plan Inference 1997;61:49–59.
  • [41] Vakkuri A, Yli-Hankala A, Talja P, Mustola S, Tolvanen- Laakso H, Sampson T, et al. Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand 2004;48:145–53.
  • [42] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997;55:119–39.
  • [43] Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag 2006;6:21–45.
  • [44] Breiman L. Bagging predictors. Mach Learn 1996;24:123–40.
  • [45] Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C Appl Rev 2012;42:463–84.
  • [46] Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 1991;21:660–74.
  • [47] Kamruzzaman J, Begg RK. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. IEEE Trans Biomed Eng 2006;53:2479–90.
  • [48] Xu Y, Zomer S, Brereton R. Support vector machines: a recent method for classification in chemometrics. Crit Rev Anal Chem 2006;36:177–88.
  • [49] Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines. Adv Kernel Methods-Support Vector Learn 1998;208:1–21.
  • [50] Phan TN, Kappas M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 2017;18:1–18.
  • [51] Chen S, Shen B, Wang X, Yoo S. A strong machine learning classifier and decision stumps based hybrid adaboost classification algorithm for cognitive radios. Sensors (Basel Switzerland) 2019;19:1–15.
  • [52] Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas 1960;20:37–46.
  • [53] Tariq Z, Shah SK, Lee Y. Lung disease classification using deep convolutional neural network. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2019;732–5. http://dx.doi.org/10.1109/BIBM47256.2019.8983071.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c4f6e70-5d8e-4cec-ba59-0fcc8ff54bb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.