PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of a discretization scheme on an autoignition time in LES of a reacting droplet-laden mixing layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We analyse an autoignition process in a two-phase flow in a temporally evolving mixing layer formed between streams of a cold liquid fuel (heptane at 300 K) and a hot oxidizer (air at 1000 K) flowing in opposite directions. We focus on the influence of a discretization method on the prediction of the autoignition time and evolution of the flame in its early development phase. We use a high-order code based on the 6th order compact difference method for the Navier–Stokes and continuity equations combined with the 2nd order Total Variation Diminishing (TVD) and 5th order Weighted Essentially Non-Oscillatory (WENO) schemes applied for the discretization of the advection terms in the scalar transport equations. The obtained results show that the autoignition time is more dependent on the discretization method than on the flow initial conditions, i.e., the Reynolds number and the initial turbulence intensity. In terms of mean values, the autoignition occurs approximately 15% earlier when the TVD scheme is used. In this case, the ignition phase characterizes a sharp peak in the temporal evolution of the maximum temperature. The observed differences are attributed to a more dissipative character of the TVD scheme. Its usage leads to a higher mean level of the fuel in the gaseous form and a smoother distribution of species resulting in a lower level of the scalar dissipation rate, which facilitates the autoignition process.
Słowa kluczowe
Rocznik
Strony
153--174
Opis fizyczny
Bibliogr. 36 poz., rys. kolor.
Twórcy
autor
  • Department of Thermal Machinery, Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Armii Krajowej 21, 42-201 Czestochowa, Poland
autor
  • Department of Thermal Machinery, Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Armii Krajowej 21, 42-201 Czestochowa, Poland
  • Department of Thermal Machinery, Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Armii Krajowej 21, 42-201 Czestochowa, Poland
Bibliografia
  • 1. R. Gerdes, C. Köberle, J. Willebrand, The influence of numerical advection schemes on the results of ocean general circulation models, Climate Dynamics, 5, 211–226, 1991.
  • 2. A. Nakayama, S. Vengadesan, On the influence of numerical schemes and subgridstress models on large eddy simulation of turbulent flow past a square cylinder, International Journal for Numerical Methods in Fluids, 38, 227–253, 2002.
  • 3. A. Chaudhuri, A. Hadjadj, A. Chinnayya, S. Palerm, Numerical study of compressible mixing layers using high-order WENO schemes, Journal of Scientific Computing, 47, 170–197, 2010.
  • 4. L. Gougeon, I. Fedioun, DNS/MILES of reacting Air/H2 diffusion jets, Proceedings of the 6th International ERCOFTAC Work on Direct and Large-Eddy Simulation (University of Poitiers) (ERCOFTAC Series), 93–100, 2005.
  • 5. F.P. Kärrholm, F. Tao, On performance of advection schemes in the prediction of diesel spray and fuel vapour distributions, Proceedings of the 22nd European Conference on Liquid Atomization and Spray Systems (Como Lake), paper ID ILASS08-2-12, 2008.
  • 6. T. Nguyen, A.M. Kempf, Investigation of numerical effects on the flow and combustion in LES of ICE, Oil & Gas Science and Technology, 72, 1–15, 2017.
  • 7. A. Rosiak, A. Tyliszczak, Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions, Journal of Physics Conference Series, 760, 012027, 2016.
  • 8. W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , Physics of Fluids, 16, 3670–3681, 2004.
  • 9. P. Jenny, D. Roekaerts, N. Beishuizen, Modeling of turbulent dilute spray combustion, Progress in Energy and Combustion Science, 38, 846–887, 2012.
  • 10. Y. Tominaga, T. Stathopoulos, Turbulent Schmidt numbers for CFD analysis with various types of flow field, Atmospheric Environment, 41, 8091–8099, 2007.
  • 11. A. Triantafyllidis, E. Mastorakos, Implementation issues of the conditional moment closure model in large eddy simulations, Flow, Turbulence and Combustion, 84, 481–512, 2010.
  • 12. J. Stempka, A. Tyliszczak, Impact of evaporation models and droplet size on autoignition and lift-off height in a spray jet flame, Combustion Science and Technology, DOI: 10.1080/00102202.2019.1678843, 2019.
  • 13. R.S. Miller, K. Harstad, J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, International Journal of Multiphase Flow, 24, 1025–1055, 1998.
  • 14. C. Duwig, K.J. Nogenmyr, C. Chan, M.J. Dunn, Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry, Combustion Theory and Modelling, 15, 537–568, 2011.
  • 15. E. Fernandez-Tarrazo, A.L. Sanchez, A. Liñan, F.A. Williams, A simple one-step chemistry model for partially premixed hydrocarbon combustion, Combustion and Flame, 147, 32–38, 2006.
  • 16. E.S. Richardson, Ignition Modelling for Turbulent Non-Premixed Flows, PhD thesis, Cambridge, 2007.
  • 17. M.C. Yuen, L.W. Chen, On drag of evaporating liquid droplets, Combustion Science and Technology, 14,147–154 , 1976.
  • 18. G.A.E. Godsave, Studies of the combustion of drops in a fuel spray: the burning of single drops of fuel, Proceedings of the Combustion Institute, 4, 818–830, 1953.
  • 19. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops and Particles, Academic Press, New York, 1987.
  • 20. A. Tyliszczak, A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows, Journal of Computational Physics, 276, 438–467, 2014.
  • 21. A. Tyliszczak, High-order compact difference algorithm on half-staggered meshes for low Mach number flows, Computers & Fluids,127, 131–145, 2016.
  • 22. A. Tyliszczak, B.J. Geurts, Parametric analysis of excited round jets – numerical study, Flow, Turbulence and Combustion, 93, 221–247, 2014.
  • 23. A. Tyliszczak, B.J. Geurts, Controlled mixing enhancement in turbulent rectangular jets responding to periodically forced inflow conditions, Journal of Turbulence, 16, 742–771, 2015.
  • 24. J. Stempka, Impact of subgrid modelling and numerical method on auto-ignition simulation of two-phase flow, Archives of Thermodynamics, 39, 55–72, 2018.
  • 25. A. Tyliszczak, Parametric study of multi-armed jets, International Journal of Heat and Fluid Flow, 73, 82–100, 2018.
  • 26. A. Boguslawski, K. Wawrzak, A. Tyliszczak, A new insight into understanding the Crow and Champagne preferred mode: a numerical study, Journal of Fluid Mechanics, 869, 385–416, 2019.
  • 27. A. Wawrzak, A. Tyliszczak, Implicit LES study of spark parameters impact on ignition in a temporally evolving mixing layer between H2/N2 mixture and air, International Journal of Hydrogen Energy, 42, 9815–9828, 2018.
  • 28. A. Wawrzak, A. Tyliszczak, A spark ignition scenario in a temporally evolving mixing layer, Combustion and Flame, 209, 353–356, 2019.
  • 29. A. Tyliszczak, LES-CMC study of an excited hydrogen flame, Combustion and Flame, 162, 3864–3883, 2015.
  • 30. A. Tyliszczak, Assessment of implementation variants of conditional scalar dissipation rate in LES-CMC simulation of auto-ignition of hydrogen jet, Archives of Mechanics, 65, 97–129, 2013.
  • 31. J. Stempka, L. Kuban, A. Tyliszczak, Influence of evaporation models on a liftoff height of a spray jet flame, Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona, Spain, July 9–13, 2018.
  • 32. S.K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics, 103, 16–42, 1992.
  • 33. C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 2, R.H. Gallagher, O.C. Zienkiewicz [eds.], John Wiley & Sons, Chichester, 1994.
  • 34. C.W. Shu, High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD, International Journal of Computational Fluid Dynamics, 17, 107–118, 2003.
  • 35. E. Mastorakos, Ignition of turbulent non-premixed flames, Progress in Energy and Combustion Science, 35, 57–97, 2009.
  • 36. E. Mastorakos, Forced ignition of turbulent spray flames, Proceedings of the Combustion Institute, 36, 2367–2383, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c4beb9f-64ea-4216-844f-e4dff321b7cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.