PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cold Plasma Treatment in Wet Chemical Textile Processing

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Obróbka plazmą w chemicznej obróbce tekstyliów
Języki publikacji
EN
Abstrakty
EN
Nowadays, cold plasma technology is highly involved in textile processing either to assist conventional wet-chemical processing and/or create innovative products. Plasma Surface treatment is an ergonomically simple process, but the plasma process and its effect on the fibre surface are more complex due to the interplay of many concurrent processes at a time. The efficiency of plasma treatment mainly depends on the nature of textile material and the treatment operating parameters. The main objective of this review paper is to summarise and discuss the application of plasma treatment and its effect on the pre-treatment, dyeing, printing and finishing of natural and synthetic textile fibres. However, the application of plasma technology to different types of textile substrates has not been fully addressed.
PL
Obecnie technologia obróbki plazmą jest często wykorzystywana w obróbce tekstyliów. Jej zastosowanie wspomaga konwencjonalną mokrą obróbkę chemiczną i/lub pozwala tworzyć innowacyjne produkty. Obróbka powierzchni plazmą jest procesem prostym z ergonomicznego punktu widzenia, ale proces plazmowy i jego wpływ na powierzchnię włókna są bardziej złożone ze względu na wzajemne oddziaływanie wielu współbieżnych procesów jednocześnie. Skuteczność obróbki plazmowej zależy głównie od rodzaju materiału tekstylnego oraz parametrów eksploatacyjnych obróbki. Głównym celem przedstawionego artykułu przeglądowego było podsumowanie i omówienie zastosowania obróbki plazmowej i jej wpływu na obróbkę wstępną, barwienie, drukowanie i wykańczanie naturalnych i syntetycznych włókien tekstylnych.
Rocznik
Strony
118--126
Opis fizyczny
Bibliogr. 111 poz.
Twórcy
  • Bahir Dar University, Ethiopian Institute of Textile and Fashion Technology [EiTEX], Ethiopia
  • Albstadt-Sigmaringen University, Material and Process Engineering [MPE], Post str. 6, 72458 Albstadt, Germany
  • Bahir Dar University, Ethiopian Institute of Textile and Fashion Technology [EiTEX], Ethiopia
Bibliografia
  • 1. Mather R R. Surface Modification of Textiles by Plasma Treatments, in: Q. Wei (1st ed.), Surf. Modif. Text., 1st ed., Woodhead Publishing Limited, New York, USA, 2009: pp. 296-314.
  • 2. Morent R, De Geyter N. Improved Textile Functionality through Surface Modification, in: N. Pan, & G. Sun (1st ed.), Funct. Text. Improv. Performance, Prot. Heal., 1st ed., Woodhead Publishing Limited in association with The Textile Institute, Cambridge, Philadelphia & New Delhi, 2011: pp. 3-24.
  • 3. Shishoo R. Plasma Technologies for Textiles, Woodhead Publishing Limited in association with The Textile Institute, Cambridge, 2007.
  • 4. Ramkrishna R, Mukesh R, Subroto M. Basics of Plasma and Its Industrial Applications in Textiles, in: S. K. Nema, & P.B. Jhala (1st ed.), Plasma Technol. Text. Appare, Woodhead Publishing India Pvt. Ltd, New Delhi, 2015: pp. 1-27.
  • 5. Kan CW, Chan K, Yuen C WM. Application of Low Temperature Plasma on Wool, Part I: Review, Nucl. 2000; 37: 9-21.
  • 6. Mather RR. Surface Modification of Textiles by Plasma Treatments, Woodhead Publishing Limited, 2009. doi:10.1533/9781845696689.296.
  • 7. Samanta KR, Basak S, Chattopadhyay SK. Environment-Friendly Textile Processing Using Plasma and UV Treatment, in: S. M. Subramanian (1st ed.), Text. Sci. Cloth. Technol. Methods, Springer Science+Business Media Singapore, Singapore, Heidelberg, New York, Dordrecht, London, 2014: pp. 161-200.
  • 8. Chan CM, Ko TM, Hiraoka H. Polymer Surface Modification by Plasmas and Photons. Surf. Sci. Rep. 1996; 24: 1-54.
  • 9. Herbert T. Atmospheric-Pressure Cold Plasma Processing Technology T., in: R. Shishoo (1st ed.), Plasma Technol. Text., Woodhead Publishing Limited in association with The Textile Institut, Cambridge, 2007: pp 79-128.
  • 10. Kan CW, Yuen CWM, Tsoi WY. Using Atmospheric Pressure Plasma for Enhancing the Deposition of Printing Paste on Cotton Fabric for Digital Ink-Jet Printing. Cellulose 2011; 18: 827-839.
  • 11. Vesel A, Mozetič M, Strnad S, Peršin Z, Stana-Kleinschek K, Hauptman N. Plasma Modification of Viscose Textile. Vacuum 2009; 84: 79-82.
  • 12. Yaman N, Özdoǧan E, Seventekin N. Atmospheric Plasma Treatment of Polypropylene Fabric for Improved Dyeability with Insoluble Textile Dyestuff. Fibers Polym. 2011; 12: 35-41.
  • 13. Zemljiĉ L, Perŝin Z, Stenius P. Improvement of Chitosan Adsorption onto Cellulosic Fabrics by Plasma Treatment. Biomacromolecules 2009; 10: 1181-1187.
  • 14. Brault P. Review of Low Pressure Plasma Processing of Proton Exchange Membrane Fuel Cell Electrocatalysts. Plasma Process. Polym. 2016; 13: 10-18.
  • 15. Kale K H, Desaia AN. Atmospheric Pressure Plasma Treatment of Textiles Using Non-Polymerising Gases. Indian J. Fibre Text. Res. 2011; 36: 289–299.
  • 16. Kogelschatz U. Filamentary, Patterned, and Diffuse Barrier Discharges, IEEE Trans. Plasma Sci. 2002; 30: 1400-1408.
  • 17. Samanta K, Jassal M, Agrawal AK. Atmospheric Pressure Glow Discharge Plasma and Its Applications in Textile. Indian J. Fibre Text. Res. 2006; 31: 83-98.
  • 18. Valentin I, Gerhard JP. The Development of Dielectric Barrier Discharges in Gas Gaps and On Surfaces. J. Phys. D. Appl. Phys. 2000; 33: 2618-2636.
  • 19. Wagner H E, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF. The Barrier Discharge: Basic Properties and Applications to Surface Treatment. Vacuum 2003; 71, 417-436.
  • 20. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C. Non-Thermal Plasma Treatment Of Textiles. Surf. Coat. Technol. 2008; 202: 3427-3449.
  • 21. Jelil R A. A Review of Low-Temperature Plasma Treatment of Textile Materials. J. Mater. Sci. 2015. DOI:10.1007/s10853-015-9152-4.
  • 22. Shah J N, Shah S R. Innovative Plasma Technology in Textile Processing : A Step towards Green Environment. Res. J. Eng. Sci. 2013; 2: 34–39.
  • 23. Hsieh Y. Surface Characteristics of Polyester Fibers, in: M. P. Christopher & K. Paul (1st ed.), Surf. Charact. FIBERS Text., Marcel Dekker, New York, 2001: pp. 34-55.
  • 24. Leung K T, Lo M T, Yeung K W. Knowledge of Materials, II. Hong Kong: Institute of Textiles and Clothing, Hong Kong Polytechnic University, 1996.
  • 25. Peršin Z, Vesel A, Kleinschek KS, Mozetič M. Characterisation of Surface Properties of Chemical and Plasma Treated Regenerated Cellulose Fabric. Text. Res. J. 2012; 82: 2078-2089.
  • 26. Liu Y, Xiong Y, Lu D. Surface Characteristics and Antistatic Mechanism of Plasma-Treated Acrylic Fibers. Appl. Surf. Sci. 2006; 252: 2960-2966.
  • 27. Chi-wai Kan. A Novel Green Treatment for Textiles. Plasma Treatment as a Sustainable Technology, 1st ed., CRC Press Taylor & Francis Group, Boca Raton, London & New York, 2015.
  • 28. Riccobono PX. Text., Chem. Color. 1973; 5: 239.
  • 29. Peng S, Liu X, Sun J. Gao Z, Yao L, Qiu Y. Influence of Absorbed Moisture on Desizing of Poly(Vinyl Alcohol) on Cotton Fabrics During Atmospheric Pressure Plasma Jet Treatment. Appl. Surf. Sci. 2010; 256: 4103-4108.
  • 30. Cai Z, Qiu Y, Zhang C, Hwang Y, Mccord M. Effect of Atmospheric Plasma Treatment on Desizing of PVA on Cotton. Text. Res. J. 2003; 8: 670-674.
  • 31. Cai Z, Qiu Y. The Mechanism of Air/Oxygen/Helium Atmospheric Plasma Action on PVA. J. Appl. Polym. Sci. 2006; 99: 2233–2237.
  • 32. Li X, Lin J, Qiu Y. Influence of He/O2atmospheric Pressure Plasma Jet Treatment on Subsequent Wet Desizing of Polyacrylate on PET Fabrics. Appl. Surf. Sci. 2012; 258: 2332-2338.
  • 33. Li X, Qiu Y. The Application of He/O2 Atmospheric Pressure Plasma Jet and Ultrasound in Desizing of Blended Size on Cotton Fabrics. Appl. Surf. Sci. 2012; 258: 7787-7793.
  • 34. Kan C W, Yuen C W M. Effect of Atmospheric Pressure Plasma Treatment on the Desizing and Subsequent Colour Fading Process of Cotton Denim Fabric. Color. Technol. 2012; 128: 356-363.
  • 35. Bae PH, Hwang YJ, Jo HJ, Kim HJ, Lee Y, Park YK, Kim JG, Jung J. Size Removal on Polyester Fabrics by Plasma Source Ion Implantation Device. Chemosphere 2006; 63: 1041-1047.
  • 36. Li X M, Qiu Y P. Comparison of Plasma – Aided Desizing with Conventional Desizing of Polyacrylate on PET Fabrics. Adv. Mater. Res. 2011; 311: 713-717.
  • 37. Cai Z, Qiu Y, Hwang YJ, Zhang C, McCord M. The Use of Atmospheric Pressure Plasma Treatment in Desizing PVA on Viscose Fabrics. J. Ind. Text. 2003; 32, 223-232.
  • 38. Szabó OE, Csiszár E, Tóth A. Enhancing the Surface Properties of Linen by Non-Thermal Atmospheric Air-Plasma Treatment. Open Chem. 2015; 13: 570-576. DOI:10.1515/chem-2015-0068.
  • 39. Sun D, Stylios GK. Effect of Low Temperature Plasma Treatment on the Scouring and Dyeing of Natural Fabrics. Text. Res. J. 2004; 74: 751-756.
  • 40. Kan C, Lam C. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric. Polymers (Basel) 2018; 10: 53.
  • 41. Wang Q, Fan X, Cui L, Wang P, Wu J, Chen J. Plasma-Aided Cotton Bioscouring: Dielectric Barrier Discharge Versus Low-Pressure Oxygen Plasma. Plasma Chem. Plasma Process. 2009; 29: 399-409.
  • 42. Canal C, Molina R, Bertran E, Erra P. Study on the Influence of Scouring on the Wettability of Keratin Fibers Before Plasma Treatment. Fibers Polym. 2008; 9: 444-449.
  • 43. Ash Demir. Atmospheric Plasma Advantages for Mohair Fibers in Textile Applications. Fibers Polym. 2010; 11: 580-585.
  • 44. Atav R, Yurdakul A. Solvent Assisted Low Temperature Dyeing Part I: Results For Mohair (Angora Goat) Fibers. FIBRES & TEXTILES in Eastern Europe 2011, 19, 6(89): 112-117.
  • 45. Carneiro N, Souto AP, Silva E, Marimba A, Tena B, Ferreira H. Dyeability of Corona-Treated Fabrics Coloration Technology. Color. Technol. 2001; 117: 298-302.
  • 46. Labay C, Canal C, Rodríguez C, Caballero G, Canal JM. Plasma Surface Functionalization and Dyeing Kinetics of Pan-Pmma Copolymers. Appl. Surf. Sci. 2013; 283: 269-275.
  • 47. Oliveira F R, Zille A, Souto AP. Dyeing Mechanism and Optimization of Polyamide 6,6 Functionalized with Double Barrier Discharge (DBD) Plasma In Air, Appl. Surf. Sci. 2014; 293: 177–186.
  • 48. Boonla K, Saikrasun S. Influence of Silk Surface Modification via Plasma Treatments on Adsorption Kinetics of Lac Dyeing on Silk. Text. Res. J. 2013; 83: 288-297.
  • 49. Vila N T, Ferreira A, Da Silva MG, Fernandes M, Fiori S. Surface Modification of Silk by (DBD) Dielectric Barrier Discharge Treatment for Dyeing with Natural Dye Yerba Mate (Ilex paraguariensis). Procedia Eng. 2017; 200: 170-177.
  • 50. Inbakumar S, Anu Kaliani A. Effect of Plasma Treatment on Surface of Protein Fabrics. J. Phys. Conf. Ser. 2010; 208.
  • 51. Öktem E, Seventekin T, Ayhan N, Pişkin H. Modification of polyester and polyamide fabrics by different in situ plasma polymerization methods. Turkish J. Chem. 2000; 24: 275-285.
  • 52. Oektem E P T, Sevetekin N, Ayhan H. Improvement in Surface-Related Properties of Poly (Ethylene Terephthalate)/Cotton, fabrics by glow-dischargetreatment 2002; 27: 161-165.
  • 53. Nasadil P, Benešovský P. Plasma in Textile Treatment. Chem. List. 2008; 102: 1486-1489.
  • 54. Jocic D, Vílchez S, Topalovic T, Molina R, Navarro A, Jovancic P, Julià MR, Erra P. Effect of Low-Temperature Plasma and Chitosan Treatment on Wool Dyeing with Acid Red 27. J. Appl. Polym. Sci. 2005; 97: 2204-2214.
  • 55. El-Zawahry M M, Ibrahim NA, Eid MA. The Impact of Nitrogen Plasma Treatment Upon the Physical-Chemical and Dyeing Properties of Wool Fabric. Polym. – Plast. Technol. Eng. 2006; 45: 1123-1132.
  • 56. Jin J, Dai J. Short Communication Dyeing Behaviour of Nitrogen Low- Tem perature Glow Discharge Treated Wool. Indian Loumal Fibre Text. Res. 2003; 28: 477-479.
  • 57. Der Liao J, Chen C, Wu Y Te, Weng CC. Hydrophilic Treatment of the Dyed Nylon-6 Fabric Using High-Density and Extensible Antenna-Coupling Microwave Plasma System. Plasma Chem. Plasma Process 2005; 25: 255-273.
  • 58. Özdogan E, Saber R, Ayhan H, Seventekin N. A New Approach for Dyeability of Cotton Fabrics by Different Plasma Polymerisation Methods. Color. Technol. 2002; 118: 100-103.
  • 59. El-Nagar K, Saudy MA, Eatah AI, Masoud MM. DC Pseudo Plasma Discharge Treatment of Polyester Textile Surface For Disperse Dyeing. J. Text. Inst. 2006; 97: 111-117.
  • 60. Raffaele-Addamo A, Selli E, Barni R, Riccardi C, Orsini F, Poletti G, Meda L, Massafra MR, Marcandalli B. Cold Plasma-Induced Modification of the Dyeing Properties of Poly(Ethylene Terephthalate) Fibers. Appl. Surf. Sci. 2006; 252: 2265-2275.
  • 61. Sarmadi M, Denes A R, Denes F. Improved Dyeing Properties of SiCi4 (ST)-Plasma Treated Polyester Fabrics. Text. Chem. Color. 1996; 28: 17-22.
  • 62. Sarmadi A M, Kwon Y A. Improved Water Repellency and Surface Dyeing of Polyester Fabrics by Plasma Treatment. Text. Chem. Color. 1993; 25: 33-40.
  • 63. Iriyama Y, Mochizuki T, Watanabe M. Treatment Better of Silk Fabrics for Dyeability. J. Photopolym. Sci. Technol. 2002; 15: 299-306.
  • 64. Černáková L, Kováčik D, Zahoranová A, Černák M, Mazúr M. Surface Modification of Polypropylene Non-Woven Fabrics by Atmospheric-Pressure Plasma Activation Followed By Acrylic Acid Grafting. Plasma Chem. Plasma Process. 2005; 25: 427-437.
  • 65. Sarmadi A M, Ying TH. Surface Modification of Polypropylene Fabrics by Acrylonitrile Cold Plasma. Text. Res. J. 1993; 63: 697.
  • 66. Ren CS, Wang DZ, Wang YN. Graft Co-Polymerization of Acrylic Acid onto the Linen Surface Induced by DBD in Air. Surf. Coatings Technol. 2006; 201: 2867-2870.
  • 67. Kan C W, Yuen C W M. Influence of Low-Temperature Plasma on the Ink-Jet-Printed Cotton Fabric. J. Appl. Polym. Sci. 2007; 104: 3214-3219.
  • 68. Kan C W. The Use of Plasma Pre-Treatment for Enhancing the Performance of Textile Ink-Jet Printing. J. Adhes. Sci. Technol. 2007; 21: 911-921.
  • 69. Radetić M, Jocić D, Jovančić P, Trajković R, Petrović ZL. The Effect of Low-Temperature Plasma Pretreatment on Wool Printing. Text. Chem. Color. Am. Dyest. Report. 2000; 32: 55-60.
  • 70. Maamoun D, Ghalab S. Plasma Utilization for Treating Wool/Polyester Blended Fabric to Improve Its Printability. Indian J. Fibre Text. Res. 2013; 38: 180-185.
  • 71. Zhang Y C, Zhao M, Wang L, Qu L, Men Y. Surface Modification of Polyester Fabrics by Atmospheric-Pressure Air/He Plasma for Color Strength and Adhesion Enhancement. Appl. Surf. Sci. 2017; 400: 304-311.
  • 72. Salem NN, Morgan A A. Modification of Polyester and Polyamide Fabrics by Atmospheric Pressure Glow Discharge Plasma. Polym. from Renew. Resour 2014; 5: 115-138.
  • 73. Zhang C, Fang K. Surface Modification of Polyester Fabrics for Inkjet Printing with Atmospheric-Pressure Air/Ar Plasma. Surf. Coatings Technol. 2009; 203: 2058-2063.
  • 74. Zhang C M, Fang KJ. Influence of Penetration Depth of Atmospheric Pressure Plasma Processing Into Multiple Layers of Polyester Fabrics on Inkjet Printing. Surf. Eng. 2009; 27: 139-144.
  • 75. Rashed UM, Ahmed H, Al-Halwagy A, Garamoon AA. Surface Characteristics and Printing Properties of PET Fabric Treated by Atmospheric Dielectric Barrier Discharge Plasma. Eur. Phys. J. Appl. Phys. 2009; 45: 11001-11007.
  • 76. Wang C, Wang C. Surface Pretreatment of Polyester Fabric for Ink Jet Printing with Radio Frequency O2 Plasma. Fibers Polym. 2010; 11: 223-228.
  • 77. Fang K, Zhang C. Surface Physical-Morphological and Chemical Changes Leading to Performance Enhancement of Atmospheric Pressure Plasma Treated Polyester Fabrics for Inkjet Printing. Appl. Surf. Sci. 2009; 255: 7561-7567. DOI:10.1016/j.apsusc.2009.04.028.
  • 78. Park Y, Koo K. The Eco-Friendly Surface Modification of Textiles for Deep Digital Textile Printing by In-Line Atmospheric Non-Thermal Plasma Treatment. Fibers Polym. 2014; 15: 1701-1707.
  • 79. Fang K, Wang S, Wang C, Tian A. Inkjet Printing Effects of Pigment Inks on Silk Fabrics Surface-Modified with O2 Plasma. J. Appl. Polym. Sci. 2008; 107: 2949-2955.
  • 80. Tuominen M, Lahti J, Lavonen J, Penttinen T, Räsänen JP, Kuusipalo J. The Influence of Flame, Corona and Atmospheric Plasma Treatments on Surface Properties and Digital Print Quality of Extrusion Coated Paper. J. Adhes. Sci. Technol. 2010; 24: 471-492.
  • 81. Payamara J, Shahidi S, Ghoranneviss M, Wiener J, Anvari A. Pages, Effect of electron irradiation on dye and printability of polypropylene (PP) fabrics: a novel method for decoration of PP fabrics. J. Text. Inst. 2010; 101: 988-995.
  • 82. Buyle G, Heyse P, Ferreira I. Plasma Technology for Hyperfunctional Surfaces. Food, Bimedical, and Textile Applications, 1st ed., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.
  • 83. Shahidi S, Ghoranneviss M. Sterilization of Cotton Fabrics Using Plasma Treatment. Plasma Sci. Technol. 2013; 15: 1031-1033.
  • 84. Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetića M. Antifungal Efficiency of Corona Pretreated Polyester and Polyamide Fabrics Loaded with Ag Nanoparticles. J. Mater. Sci. 2009; 44: 3983-3990.
  • 85. Ilić V, Šaponjić Z, Vodnik V, Molina R, Dimitrijević S, Jovančić P, Nedeljković J, Radeti M. Antibacterial Effect of Silver Nanoparticles Deposited on Corona-Treated Polyester and Polyamide Fabrics. Polym. Adv. Technol. Antibact. 2008; 19: 1816-1821.
  • 86. Malshe P, Mazloumpour M, El-Shafei A, Hauser P. Functional Military Textile: Plasma-Induced Graft Polymerization of Dadmac for Antimic Robial Treatment on Nylon-Cotton Blend Fabric. Plasma Chem. Plasma Process 2012; 32: 833-843.
  • 87. Maneerung T, Tokura S, Rujiravanit R. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydr. Polym. 2008; 72: 43-51.
  • 88. Szymanowski H, Sobczyk A, GazickiLipman M, Jakubowski W, Klimek L. Plasma Enhanced CVD Deposition of Titanium oxide for Biomedical Applications. Surface and Coatings Technology 2005, 200: 1036-1040.
  • 89. Müller S, Zahn R, Koburger T, Weltmann K. Smell Reduction And Disinfection Of Textile Materials By Dielectric Barrier Discharges. Natural Science 2010; 2: 1044-1048.
  • 90. Damm C, Münstedt H, Rösch A. The Antimicrobial Efficacy of Polyamide 6/Silver-Nano- and Microcomposites. Mater. Chem. Phys. 2008; 108: 61-66.
  • 91. Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetića M. The Influence of Silver Content on Antimicrobial Activity and Color of Cotton Fabrics Functionalized with Ag Nanoparticles. Carbohydr. Polym. 2009; 78: 564-569.
  • 92. Xu H, Peng S, Wang C, Yao L, Sun J, Ji F, Qiu Y. Influence of Absorbed Moisture on Antifelting Property of Wool Treated with Atmospheric Pressure Plasma. J. Appl. Polym. 2009; 113, 3687-3692.
  • 93. Cheng S Y, Yuen CWM, Kan W C, Cheuk KKL, Daoud W A, Lam P L, Tsoi WYI. Influence of Atmospheric Pressure Plasma Treatment on Various Fibrous Materials: Performance Properties and Surface Adhesion Analysis. Vacuum 2010; 84: 1466-1470.
  • 94. Kim MS, Kang TJ. Dimensional Properties of Low Temperature Plasma and Silicone Treated Wool Fabric. Fibers Polym 2001; 2: 30–34.
  • 95. Canal C, Molina R, Bertran E, Erra P. Polysiloxane Softener Coatings on Plasma-Treated Wool : Study of the Surface Interactions. Macromol. Mater. Eng. 2007; 292: 817-824.
  • 96. Shahidi S, Rashidi A, Ghoranneviss M, Anvari A, Wiener J. Plasma Effects on Anti-Felting Properties of Wool Fabrics. Surf. Coat. Technol. 2010; 205: 349-354.
  • 97. Mori M, Inagaki N. Relationship between Anti-felting Properties and Physicochemical Properties of Wool Fibers Treated with Ar-plasma. Textile Research Journal 2006; 79: 687-694.
  • 98. Kan CW, Yuen CWM. Static Properties and Moisture Content Properties of Polyester Fabrics Modified by Plasma Treatment and Chemical Finishing. Nucl. Instruments Methods Phys. 2008; 266: 127-132.
  • 99. Rashidi A, Moussavipourgharbi H, Mirjalili M, Ghoranneviss M. Effect of Low-Temperature Plasma Treatment on Surface Modification of Cotton and Polyester Fabrics. Indian J. Fibre Text. Res. 2004; 29: 74-78.
  • 100. Bhat N V; Benjamin Y N. Surface Resistivity Behavior of Plasma Treated and Plasma Grafted Cotton and Polyester Fabrics. Text. Res. J. 1999; 69: 38-42.
  • 101. Samanta K K, Jassal M, Agrawal AK. Antistatic Effect of Atmospheric Pressure Glow Discharge Cold Plasma Treatment on Textile Substrates. Fibers Polym. 2010; 11: 431-437.
  • 102. Zille A, Oliveira R, Souto P. Plasma Treatment in Textile Industry. Plasma Process. Polym. 2015; 12: 98-131.
  • 103. Li R, Ye L, Mai YW. Application of Plasma Technologies in Fibre-Reinforced Polymer Composites: a Review of Recent Developments. Compos. Part A Appl. Sci. Manuf. 1997; 28: 73-86.
  • 104. Höcker H. Plasma Treatment of Textile Fibers. Pure Appl. Chem. 2002; 74: 423-427.
  • 105. Buyle G. Nanoscale Finishing of Textiles via Plasma Treatment. Mater. Technol. 2009; 24: 46-51.
  • 106. Hegemann D. Plasma Polymerization and Its Application in Textiles. Indian J. Fibre Text. Res. 2006; 31: 99-115.
  • 107. Nema S K, Jhala P B. Plasma Technology for Textile and Apparel, Woodhead Publishing India; 1st Edition (June 30, 2015).
  • 108. Reece Roth J. Industrial Plasma Engineering, Institute of Physics Publishing, Bristol 37 The 4th State Inc., 2001. DOI:10.1201/9781420034127.
  • 109. Pavlovo Posad Shwal Manufactory (2020). http://platki.ru/en/ about/manufactory/. Accessed 22 May 2020.
  • 110. Act-clean (2020) The way to cleaner production. http://actclean. eu/index.php/Textile-low-pressure-plasma-technology-fla; 100.358/1. Accessed 22 May 2020.
  • 111. Development of Industrial Scale Atmospheric Pressure Air Plasma System to Treat Angora Wool for HIFEED, Ranichauri and Weaver’s Society, Kullu. http://hifeed.org/development-of-industrial-scale-atmospheric-pressure-air-plasma-system-to-treat-angora-wool/. Accessed 22 May 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c4bd4ff-68c5-48d3-91e7-524b167cfcc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.