PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermally stable biopolymer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes– preparation and properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Poly(3-hydroxybutyrate) (P3HB) is a biopolymer, but storing products from P3HB causes the deterioration of their properties leading to their brittleness. P3HB has also low thermal stability. Its melting point almost equals its degradation temperature. To obtain biodegradable and biocompatible materials characterized by higher thermal stability and better strength parameters than the unfilled P3HB, composites with the addition of polyurethanes were produced. Methods: The morphology, thermal, and mechanical property parameters of the biocomposites were examined using scanning electron microscopy, thermogravimetric analysis, standard differential scanning calorimetry, and typical strength machines. Results: Aliphatic polyurethanes, obtained by the reaction of 1,6-hexamethylene diisocyanate and polyethylene glycols, were used as modifiers. To check the influence of the glycol molar mass on the properties of the biocomposites, glycols with a molecular weight of 400 and 1000 g/mol were used. New biocomposites based on P3HB were produced with 5, 10, 15, and 20 wt. % content of polyurethane by direct mixing using a twin-screw extruder. The following property parameters of the prepared biocomposites were tested: degradation temperature, glass transition temperature, tensile strength, impact strength, and Brinell hardness. Conclusions: Improvement of the processing property parameters of P3HB-biocomposites with the addition of aliphatic polyurethanes was achieved by increasing the degradation temperature in relation to the degradation temperature of the unfilled P3HB by over 30 C. The performance property parameters have also been improved by reducing the brittleness compared to the P3HB, as evidenced by the increase in impact strength and the decrease in hardness with an increase in the amount of polyurethane obtained by the reaction of 1,6-hexamethylene diisocyanate and polyethylene glycol with a molecular weight of 400 g/mol (PU400) as modifier.
Rocznik
Strony
91--105
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
  • Department of Experimental and Clinical Pharmacology, Medical College of Rzeszów University, The University of Rzeszów, Rzeszów, Poland
  • Faculty of Mechanics and Technology, Rzeszow University of Technology, Stalowa Wola, Poland
  • Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
  • Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
autor
  • Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
  • Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
  • Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
  • Faculty of Chemical Engineering and Commodity Science, University of Technology and Humanities, Radom, Poland
  • Faculty of Chemical Engineering and Commodity Science, University of Technology and Humanities, Radom, Poland
Bibliografia
  • [1] ALSAFADI D., AL.-MASHAQBEH O., MANSOUR A., ALSAAD M., Optimization of nitrogen source supply for enhanced biosynthesis and quality of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by extremely halophilic archaeon, Haloferax mediterranei, Microbiol. Open, 2020, 9.
  • [2] ASHBY R.D., SOLAIMAN D.K.Y., STRAHAN G.D., The Use of Azohydromonas lata DSM 1122 to Produce 4-hydroxyvalerateContaining Polyhydroxyalkanoate Terpolymers, and Unique Polymer Blends from Mixed-Cultures with Burkholderia sacchari DSM 17165, J. Polym. Environ., 2019, 27, 198–209.
  • [3] ASHORI A., JONOOBI M., AYRILMIS N., SHAHREKI A., FASHAPOYEH M.A., Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements, Int. J. Biol. Macromol., 2019, 136, 1119–1124.
  • [4] ASHRAFI M., GHASEMI A.R., HAMADANIAN M., Optimization of thermo-mechanical and antibacterial properties of epoxy/polyethylene glycol/MWCNTs nano-composites using response surface methodology and investigation thermal cycling fatigue, Polym. Test., 2019, 78, 105946.
  • [5] CZERNIECKA-KUBICKA A., ZIELECKI W., FRĄCZ W., JANUS--KUBIAK M., KUBISZ L., PYDA M., Vibrational heat capacity of the linear 6,4-polyurethane, Thermochim. Acta, 2020, 683, 178433.
  • [6] IBRAHIM M.I., ALSAFADI D., ALAMRY K.A., HUSSEIN M.A., Properties and Applications of Poly(3-hydroxybutyrate-co-3--hydroxyvalerate) Biocomposites, J. Polym. Environ., 2020.
  • [7] ISRANI N., VENKATACHALAM P., GAJARAJ B., VARALAKSHMI K.N., SHIVAKUMAR S., Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation, J. Environ. Manage., 2020, 255, 109884.
  • [8] KOLLER M., Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament?, The EuroBiotech. J., 2019, 3, 32–44.
  • [9] KONTÁROVÁ S., PŘIKRYL R., MELČOVÁ V., MENČÍK P., HORÁLEK M., FIGALLA S., PLAVEC R., FERANC J., SADÍLEK J., POSPÍŠILOVÁ A., Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing, Materials, 2020, 13, 4736.
  • [10] MA P., CAI X., LOU X., DONG W., CHEN M., LEMSTRA P.J., Styrene-assisted melt free-radical grafting of maleic anhydride onto poly(β-hydroxybutyrate), Polym. Degrad. Stab., 2014, 100, 93–100.
  • [11] MORALES-GONZALEZ M., ARÉVALO-ALQUICHIRE S., DIAZ L.E., SANS J.Á., VILARIÑO-FELTRER G., GÓMEZ-TEJEDOR J.A., VALERO M.F., Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol–polycaprolactonebased polyurethanes, J. Mater. Res., 2020, 35, 3276–3285.
  • [12] MORI K., Poly-3-hydroxybutyrate-based polymer resin composition, JP5205825B2, 2013.
  • [13] MORI K., Poly-3-hydroxybutyrate-based polymer resin composition, JP5205838B2, 2013.
  • [14] MORI K., SUZUKI K.-I., Poly-3-hydroxybutyrate-based polymer resin composition, JP527756B2, 2013.
  • [15] NANNI A., MESSORI M., Effect of the wine lees wastes as cost-advantage and natural fillers on the thermal and mechanical properties of poly(3-hydroxybutyrate-co-hydroxyhexanoate) (PHBH) and poly(3-hydroxybutyrate-cohydroxyvalerate) (PHBV), J. Appl. Polym. Sci., 2020, 137, 48869.
  • [16] SÁNCHEZ-SAFONT E.L., ARRILLAGA A., ANAKABE J., GAMEZ--PEREZ J., CABEDO L., PHBV/TPU/cellulose compounds for compostable injection molded parts with improved thermal and mechanical performance, J. Appl. Polym. Sci., 2019, 136, 47257.
  • [17] SOLEYMANI EIL BAKHTIARI S., KARBASI S., TOLOUE E.B., Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review, Int. J. Biol. Macr., 2021, 166, 986–998.
  • [18] SOSA-HERNÁNDEZ J.E., VILLALBA-RODRÍGUEZ A.M., ROMERO--CASTILLO K.D., ZAVALA-YOE R., BILAL M., RAMIREZMENDOZA R.A., PARRA-SALDIVAR R., IQBAL H.M.N., Poly-3-hydroxybutyrate-based constructs with novel characteristics for drug delivery and tissue engineering applications – A review, Polym. Eng. Sci., 2020, 60, 1760–1772.
  • [19] VOLOVA T., KISELEV E., ZHILA N., SHISHATSKAYA E., Synthesis of Polyhydroxyalkanoates by Hydrogen-Oxidizing Bacteria in a Pilot Production Process, Biomacromol., 2019, 20, 3261–3270.
  • [20] VOLOVA T., MENSHIKOVA O., ZHILA N., VASILIEV A., KISELEV E., PETERSON I., SHISHATSKAYA E., THOMAS S., Biosynthesis and properties of P(3HB- co -3HV- co -3H4MV) produced by using the wild-type strain Cupriavidus eutrophus B-10646: Synthesis of PHAs containing 3H4MV by wild strain Cupriavidus eutrophus B-10646, J. Chem. Technol. Biotechnol., 2019, 94, 195–203.
  • [21] WUNDERLICH B., Thermal analysis of polymeric materials, Springer, Berlin 2005.
  • [22] YU Z., YANG Y., ZHANG L., DING Y., CHEN X., XU K., Study on short glass fiber-reinforced poly(3-hydroxybutyrate-co-4hydroxybutyrate) composites, J. Appl. Polym. Sci., 2012, 126, 822–829.
  • [23] ZAIDI Z., MAWAD D., CROSKY A., Soil Biodegradation of Unidirectional Polyhydroxybutyrate-Co-Valerate (PHBV) Biocomposites Toughened With Polybutylene-Adipate-Co-Terephthalate (PBAT) and Epoxidized Natural Rubber (ENR), Front. Mater., 2019, 6, 275.
  • [24] ZHILA N., SHISHATSKAYA E., Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units, Int. J. Biol. Macromol., 2018, 111, 1019–1026.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c482585-1375-4796-8d5e-d418a2c0fd33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.