PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A geophysical investigation of the urban-expanding area over the seismologically active Dahshour region, Egypt

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Western Desert region between Cairo and Fayoum in Egypt is a geologically interesting area due to its active seismicity status and the continuous bidirectional urban expansions ongoing northward and southward growth. This work aims to develop a geological model of the region by combining magnetic intensity data (aeromagnetic) and potential field data (airborne gravity) with magnetotelluric (MT) data to offer decision-makers an additional evaluation tool for long-term future planning. Applying a number of filters to aerial gravity and magnetic data allowed us to calculate the subsurface density distribution and structure of the area between Cairo and Fayoum. In addition, the surface of the crust was imaged down to a depth of 6 km using a 3-D inversion of gravity data. Magnetotelluric data were gathered at eight locations over the NS-extended Cairo-Fayoum Road profile. MT data were inverted in 2-D to generate a resistivity model that defines the subsurface structure of the researched region. The subsurface geometry in the MT-derived resistivity model agrees with the results of airborne potential measurements, and no consideration was given to any faults that may have been undetected from the potential maps. Long-term seismological observations indicated that the likely active sources of earthquakes are limited to the recognized main faults and that the ongoing “1185 buildings” construction project did not and will not cause unanticipated seismicity. The paper concludes that urban growth is secure so long as the earthquake codes are rigorously considered while planning civil projects. The northern study region must be regularly monitored for induced seismicity. On the Cairo-Fayoum Road's western side, the middle sector of the study area is the safest place for future civil developments.
Czasopismo
Rocznik
Strony
743--757
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo 11421, Egypt
  • National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo 11421, Egypt
  • Present Address: Now at Institute of Geophysics, University of Münster, Corrensstr. 24, 48149 Münster, Germany
  • National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo 11421, Egypt
  • National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo 11421, Egypt
Bibliografia
  • 1. Abdel Kader AK, Kordik P, Khalil A, Mekkawi M, El-Bohoty M, Rabeh T, Refai MK, El-Mahdy M (2013) Interpretation of geophysical data at EL Fayoum-Dahshour Area, Egypt using 3-D models. Arab J Sci Eng 38:1769-1784
  • 2. Abdel Zaher M, Saibi H, Mansour K, Khalil A, Soliman M (2018) Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis Western Desert, Egypt. Renew Sustain Energy Rev 82(3):3824-3832
  • 3. Abou Elenean KM (1997) Seismotectonics of Egypt in relation to the Mediterranean and Red Seas tectonics. Ph. D. Thesis, Ain Shams University, Egypt
  • 4. Abou Elenean KM, Mohamed AME, Hussein HM (2010) Source parameters and ground motion of the Suez-Cairo shear zone earthquakes, Eastern Desert, Egypt. Nat Hazards 52:431-451. https:// doi.org/10.1007/s11069-009-9388-x
  • 5. Abu El-Ata AS, Abd El-Nabi SH (1985) Mapping the structural elements dissecting the CRETACEOUS rock units of the Qattara depressions area, western Desert, Egypt; using 3-D gravity modeling. Geological survey of Egypt. In: Proc of 4th Ann., pp 103-23
  • 6. Afife M, Littke R, Lashin A, All MA (2018) Petrophysical reservoir-rock properties and source-rock characterization of Abu Roash Formation in Wadi El-Rayan oil field, Western Desert, Egypt. Arab J Geosci 11(14):378. https://doi.org/10.1007/ s12517-018-3694-0
  • 7. Araffa SA, Monteiro Santos FA, Arafa-Hamed T (2012) Delineating active faults by using integrated geophysical data at northeastern part of Cairo, Egypt. NRIAG J Astron Geophys 1(1):33-44. https://doi.org/10.1016/j.nrjag.2012.11.004
  • 8. Araffa SA, Monteiro Santos FA, Arafa-Hamed T (2014) Assessment of subsurface structural elements around greater Cairo by using integrated geophysical tools. Environ Earth Sci 71:3293-3305. https://doi.org/10.1007/s12665-013-2716-1
  • 9. Ayyad MH, Darwish M (1996) Syrian arc structures: a unifying model of inverted basins and hydrocarbon oncurrencies in North Egypt.
  • 10. In: Proc. 13th petroleum exploration and production conference, vol 1. Egyptian Petroleum Corporation, Cairo, Egypt, pp 40-59
  • 11. Becken M, Burkhardt H (2004) An ellipticity criterion in magnetotelluric tensor analysis. Geophys J Int 159:69-82
  • 12. Booker J (2014) The magnetotelluric phase tensor: a critical review. Surv Geophys 35:7-40
  • 13. Bosworth W, El-Hawat AA, Helgeson DE, Burke K (2008) Cyrenaican ‘“shock absorber”’ and associated inversion strain shadow in the collision zone of northeast Africa. Geology 36:695-698. https:// doi.org/10.1130/G24909A.1
  • 14. Bown TM, Kraus M (1988) Geology and paleoenvironment of the Oligocene Jebel Qatrani Formation and adjacent rocks, Fayium Depression, Egypt. U.S. Geological Survey Professional Paper 1452
  • 15. Brimichi L, Khalil A, Kord'ik P, Mekkawi M, El-Bohoty M, Refai MK, Abdel Kader AK (2011) Active subsurface structures at Fayoum-Cairo district, Northern Western Desert, Egypt, as deduced from magnetic data. Contrib Geophys Geod 41/4:329-351
  • 16. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158(2):457-469
  • 17. Celebi TM, Sharp RV (1993) The October 12, 1992, Dahshur, Egypt, Earthquake. Earthq Volcanoes (USGS) 24(1):27-41
  • 18. Chave AD, Jones AG (2012) The magnetotelluric method. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO97 81139020138
  • 19. Comeau MJ, Becken M, Käufl JS et al (2020) Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-D magnetotelluric transect. Earth Planets Space 72:5. https://doi.org/10.1186/s40623-020-1131-6
  • 20. Di Paolo F, Ledo J, Ślęzak K et al (2020) La Palma Island (Spain) geothermal system revealed by 3D magnetotelluric data inversion. Sci Rep 10:18181. https://doi.org/10.1038/s41598-020-75001-z
  • 21. Egyptian General Petroleum Company (EGPC) (1987) Geological map of Egypt. NH 36 SW Beni Suef, Conoco Coral. Scale: 1:500000 Fairhead JD, Watts AB, Chevalier P, El-Haddadeh B, Green CM, Stuart GW, Whaler KA, Whindle I (1988) African gravity project. Technical Report. University of Leeds Industrial Services Ltd., Leeds, United Kingdom
  • 22. Getech (1992) The African Magnetic Mapping Project. Commercial report (unpublished).
  • 23. Ghosh GK (2016) Interpretation of gravity data using 3D Euler deconvolution, tilt angle, horizontal tilt angle and source edge approximation of the north-west Himalaya. Acta Geophys 64(4):1112-1138. https://doi.org/10.1515/acgeo-2016-0042
  • 24. Green CM, Barritt SD, Fairhead JD, Misener DJ (1992) The African Magnetic Mapping Project. Extended Abstract, European Association of Geoscientists & Engineers (EAGE) 54th Meet Technical Exhibition: Paris
  • 25. Hammad MM, Awad SA, El Nady MM, Moussa DA (2010) The subsurface geology and source rocks characteristics of some jurassic and cretaceous sequences in the West Qarun Area, North Western Desert, Egypt. Energy Sources Part a: Recovery Util Environ Effects 32(20):1885-1898. https://doi.org/10.1080/1556703070 1715955
  • 26. Hersir G, Árnason K, Vilhjálmsson A, Saemundsson K, Ágústsdóttir P, Friöleifsson G (2020) Krýsuvík high temperature geothermal area in SW Iceland: geological setting and 3D inversion of magnetotelluric (MT) resistivity data. J Volcanol Geotherm Res 391:106500, https://doi.org/10.1016/j.jvolgeores.2018.11.021
  • 27. Hinze W, von Frese R, Saad A (2010) Gravity and magnetic exploration: principles, practices, and applications, pp 1-512. https://doi. org/10.1017/CBO9780511843129.
  • 28. Käufl JS, Grayver AV, Comeau MJ, Kuvshinov AV, Becken M, Kamm J, Batmagnai E, Demberel S (2020) Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia. Geophys J Int 221(2):1002-1028. https://doi.org/10.1093/gji/ggaa039
  • 29. Key K (2016) MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys J Int 207(1):571-588. https://doi.org/10.1093/gji/ggw290
  • 30. Khalil MH, Moustafa AR (1994) Tectonic framework of Northeast Egypt and its bearing hydrocarbon exploration. In: Proc. 12th petroleum exploration and production conference, vol 1. Egyptian Petroleum Corporation, Cairo, pp 67-86
  • 31. Khalil A, Toni M, Hassoup A, Mansour K (2014) Analysis of aeromagnetic data for interpretation of seismicity at Fayoum-Cairo area, Egypt. Earth Sci Res J 18(1):7-13
  • 32. Kirkby AL, Zhang F, Peacock J, Hassan R, Duan J (2019) The MTPy software package for magnetotelluric data analysis and visualisation. J Open Source Softw 4(37):1358. https://doi.org/10.21105/ joss.01358
  • 33. Krieger L, Peacock J (2014) MTpy: a python toolbox for magneto-tellurics. Comput Geosci 72:167-175. https://doi.org/10.1016/j. cageo.2014.07.013
  • 34. Melo FF, Barbosa VCF (2018) Correct structural index in Euler deconvolution via base-level estimates. Geophysics 83:J87-J98. https:// doi.org/10.1190/geo2017-0774.1
  • 35. Mossaad M (1996) Liquefaction during the October 12, 1992 Dah-shour, Egypt, earthquake and its potential in The Nile valley and delta. Soils Found 36(2):13-27
  • 36. Moustafa AR (2010) Structural setting and tectonic evolution of north Sinai folds, Egypt. In: Homborg C, Bachmann M (eds) Evolution of the levant margin and Western Arabia platform since the Mesozoic, vol 341. Geol. Soc. Lond, Spec Publ, pp 37-63
  • 37. Moustafa SR, Takenaka H (2009) Stochastic ground motion simulation of the 12 October 1992 Dahshour earthquake. Acta Geophys 57(3):636-656
  • 38. Othman A, Fathy M, Ali AS (2016) Geophysical evaluation for Wadi Rayan Field, Western Desert, Egypt. Egypt J Petroleum 25:125-132
  • 39. Pirttijärvi M (2004) BLOXER. Interactive visualization and editing software for 3-D block models, version 1.5, user’s guide, Geophysical survey of Finland, Report Q16.2/2004/1
  • 40. Reid AB, Thurston JB (2014) The structural index in gravity and magnetic interpretation: errors, uses, and abuses. Geophysics 79(4):J61-J66
  • 41. Said R (1981) The geological evolution of the River Nile. Elsevier Publ. Co., Amsterdam, p 180
  • 42. Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge, 272 p. https://doi.org/10.1017/CBO97 80511614095
  • 43. Thompson DT (1982) EULDPH. A new technique for making computer assisted depth estimates from magnetic data. Geophysics 47:31-37
  • 44. Tracy A, Javernick-Will A (2020) Credible sources of information regarding induced seismicity. Sustainability 12(6):2308. https:// doi.org/10.3390/su12062308
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c4451c7-1d6a-4fbf-a205-ae8dfe32bb67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.