PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element implementation of slightly compressible and incompressible first invariant-based hyperelasticity: theory, coding, exemplary problems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study is concerned with the finite element (FE) implementation of slightly compressible hyperelastic material models. A class of constitutive equations is considered where the isochoric potential functions are based on the first invariant of the right Cauchy-Green (C-G) deformation tensor. Special attention is paid to the most recently developed model formulations. The incremental form of hyperelasticity and its numerical implementation into both commercial and non-commercial FE software are discussed. A Fortran 77 UMAT code is attached which allows for a simple implementation of arbitrary first invariant-based constitutive models into Abaqus and Salome-Meca FE packages. Several exemplary problems are considered.
Rocznik
Strony
787--800
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Department of Mechanics and Armament Technology, Warsaw, Poland
Bibliografia
  • 1. Da Silva Soares J.F., 2008, Constitutive modeling for biodegradable polymers for application in endovascular stents, PhD thesis, Texas A&M University
  • 2. Demiray H., 1972, A note on the elasticity of soft biological tissues, Journal of Biomechanics, 5, 3, 309-311
  • 3. Demiray H., Weizsacker H.W., Pascale K., Erbay H.A. , 1988, A stress-strain relation for a rat abdominal aorta, Journal of Biomechanics, 21, 5, 369-374
  • 4. Gent A.N., 1996, A new constitutive relation for rubber, Rubber Chemistry and Technology, 69, 59-61
  • 5. Hibbit B., Karlsson B., Sorensen P., 2008, ABAQUS Theory Manual, Hibbit, Karlsson & Sorensen Inc.
  • 6. Jemioło S., 2002, A study on the hyperelastic properties of isotropic materials (in Polish), Scientific Surveys of Warsaw University of Technology, 140, Warsaw University of Technology Publishing House, Warsaw
  • 7. Jemioło S., 2016, Constitutive relations of hyperelasticity (in Polish), Studies in the Field of Engineering, 94, The Committee on Civil Engineering and Hydroengineering of the Polish Academy of Sciences, Warsaw
  • 8. Jemioło S., Gajewski M., 2014, Hyperelastoplasticity (in Polish), Monographs of the Department of Strength of Materials, Theory of Elasticity and Plasticity, 4, Warsaw University of Technology Publishing House, Warsaw
  • 9. Khajehsaeid H., Arghavani J., Naghdabadi R., 2013, A hyperelastic constitutive model for rubber-like materials, European Journal of Mechanics A/Solids, 38, 2, 144-151
  • 10. Knowles J.K., 1977, The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids, International Journal of Fracture, 13, 5, 611-639
  • 11. Liu C.H., Hofstetter G., Mang H.A., 1994, 3D finite element analysis of rubber-like materials at finite strains, Engineering Computations, 11, 111-128
  • 12. Lopez-Pamies O., 2010, A new I1-based hyperelastic model for rubber elastic materials, Comptes Rendus Mecanique, 338, 1, 3-11
  • 13. Simo J.C., Taylor R.L., 1982, Penalty function formulations for incompressible nonlinear elastostatics, Computer Methods in Applied Mechanics and Engineering, 35, 107-118
  • 14. Stein E., Sagar G., 2008, Convergence behavior of 3D finite elements for neo-Hookean material, Engineering Computations: International Journal for Computer-Aided Engineering and Software, 25, 3, 220-232
  • 15. Suchocki C., 2011, A finite element implementation of Knowles stored-energy function: theory, coding and applications, Archive of Mechanical Engineering, 58, 3, 319-346
  • 16. Suchocki C., 2013, A quasi-linear viscoelastic rheological model for thermoplastics and resins, Journal of Theoretical and Applied Mechanics, 51, 1, 117-129
  • 17. Sussman T., Bathe K.J., 1987, A finite element formulation for nonlinear incompressible hyperelastic and inelastic analysis, Computers and Structures, 26, 357-409
  • 18. Young J.M., Yao J., Ramasubramanian A., Taber L.A., Perucchio R., 2010, Automatic generation of user material subroutines for biomechanical growth analysis, Journal of Biomechanical Engineering, 132, 10, doi: 10.1115/1.4002375
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c3a30b4-90bd-4777-ba66-bc541f87d2f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.