PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparing Carex Species of Mid-Forest Spring Ecosystems in Terms of Ability to Accumulate Macro- and Microelements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to compare the accumulative macro- and microelements in the shoots of Carex acutiformis, Carex echinata, Carex paniculata, Carex remota and Carex rostrata. The content of components in the shoots of the plants was analyzed in relation the chemical composition of the soil. The research was done within the area of four mid-forest spring niches situated in the valley of a tributary of the Słupia River located within the area of Leśny Dwór Forest Inspectorate (Northern Poland). The examined species of Carex, in comparison to other plants in spring niches, were characterized by an average capacity to accumulate both macro- and microelements, which results in little interest in these species when planning artificial buffer zones. Out of the analyzed species, the shoots of C. echinata accumulated the largest quantities of Mg, Zn and Mn, the shoots of C. paniculata –Fe, C. remota – K, Ni, Al and Sr, C. acutiformis – N and P, and the shoots of C. rostrata –Ca and Cu. Similarities between the species of Carex, which resulted from their accumulative properties, were discovered. C. echinata and C. rostrata were characterized by high levels of bioconcentration factors (BF) for Sr, Cu and Ca and low BF for K. C. paniculata and C. remota represented high BF levels for Ni and Mg and low BF levels for Sr, Al, Mn, Cu, Ca, Fe and N. On the other hand, C. acutiformis was characterized by high BF levels for P, K and Mn. In spite of an average accumulative capacity, the examined species of Carex were characterized by highly developed surface and underground zones which had effective impact on the retention of pollutants.
Rocznik
Strony
125--136
Opis fizyczny
Bibliogr. 43 poz., tab., rys.
Twórcy
  • Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200 Słupsk, Poland
autor
  • Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200 Słupsk, Poland
autor
  • Department of Soil Environment Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • 1. Alloway B. J. 1995. Soil processes and the behavior of metals, [in:] Alloway B.J. (ed.) Heavy metals in soils. 2nd ed. Blackie, Glasgow, 7–28.
  • 2. Chiquan H., Kuiyi Z. 2001. The accumulation, allocation and biological cycle of the nutrient elements in Carex lasiocarpa wetland. Acta Ecologica Sinica 21(12), 2074–2080.
  • 3. Choo Y.S., Lee C.B., Albert R. 2002. Effects of nitrogen nutrition on the pattern of ions and organic solutes in five sedges (Carex spp.). Flora 197, 56–66.
  • 4. Czerwiński Z., Pracz J. 1995. Content of mineral components in the over-ground parts of herb layer plants in the Sphagno girgensohnii-Piceetum community. Pol. Ecol. Stud. 21(2), 195–205.
  • 5. Decamps H., Pinay G., Naiman R.J., G.E. Petts, McClain M.E., Hillbricht-Ilkowska A., Hanley T.A., Holmes R.M., Quinn, Gibert J., Planty Tabacchi A.M., Schiemer F., Tabacchi E., Zalewski M. 2004. Riparian zones: where biogeochemistry meets biodiversity in management practice. Pol. J. Ecol. 52, 1, 3–18.
  • 6. Deng H., Ye Z.H., Wong M.H. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut.132, 29–40.
  • 7. Dosskey M.G., Vidon P., Gurwick N.P., Allan C.J., Duval T.P., Lawrance R. 2010. The role of riparian vegetation in protecting and improving chemical water quality in streams. Journal of the American Water resources Association (JAWRA), 1–18.
  • 8. Falkowski M., Kukułka I., Kozłowski S. 2000. Chemical properties of meadow plants. Publisher Agricultural University of Poznań. (in Polish)
  • 9. Galal T.M., Shehata H.S. 2015. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soil under the effect of traffic pollution. Ecological Indicators 48, 244–251.
  • 10. Grzelak M., Gaweł E., Barszczewski J., Knioła A., Murawski M. 2015. Waloryzacja przyrodniczo-użytkowa i siedliskowa szuwaru turzycy zaostrzonej. Fragm. Agron. 32(1), 41–49.
  • 11. Grzelak M., Kryszak A., Kaczmarek Z. 2006. Uwarunkowania siedliskowe i produktywność zbiorowisk trawiastych na terenach zalewanych. Roczn. AR Poznań, Rolnictwo 66, 105–111.
  • 12. Gworek B. 2006. Glin w środowisku przyrodniczym a jego toksyczność. Ochrona Środowiska i Zasobów Naturalnych 29, 27–38.
  • 13. Harasimiuk A. 2006. Bioaccumulation of elements in crop plants and soils. [In]: The issue of the functioning of lowland landscapes. 239–254, University of Warsaw Press, Warsaw.
  • 14. Hazlett P, Broad K, Gordon A, Sibley P, Buttle J, Larmer D. 2008. The importance of catchment slope to soil water N and C concentrations in riparian zones: implications for riparian buffer width. Can. J. Forest Res 38(1),16−30.
  • 15. Jonczak J. 2011. Pedological aspects in the functioning of spring niches as transition zones between underground and superficial parts of water cycle in river basin. Ecological Questions 15, 35–43.
  • 16. Jonczak J., Parzych A., Sobisz Z. 2014. The content and profile distribution patterns of Cu, Ni and Zn in histosols of headwater areas in the Valley of Kamienna Creek (northern Poland). Baltic Coastal Zone 18, 5–13.
  • 17. Jonczak J., Parzych A. 2016. Właściwości materii organicznej gleb śródleśnych nisz źródliskowych w dolinie Kamiennej (Pomorze Środkowe). Sylwan 160 (2), 135–143.
  • 18. Jonczak J., Olejniczak M., Parzych A., Sobisz Z. 2016. Dynamics, structure and chemistry of litterfall in headwater riparian forest in the area of Middle Pomerania. J. Elem. 21(2), 383–394.
  • 19. Jonczak J., Parzych A., Sobisz Z. 2015a. Distribution of carbon and nitrogen forms in the Histosols of headwater areas – a case study from the Valley of the Kamienna Creak (Northern Poland). J. Elem. 1, 95–105.
  • 20. Jonczak J., Parzych A., Sobisz Z. 2015b. Decomposition of four tree species leaf litters in headwater riparian forest. Baltic Forestry 21(1), 133–143.
  • 21. Kabata-Pendias A., Pendias H. 1999. Biogeochemistry trace elements. PWN, Warszawa.
  • 22. Kabata-Pendias A., Szteke B. 2005. Trace elements in soil-plant system. Inż. Ekol. 26, 28–29 (in Polish).
  • 23. Karlssonet O.M., Richardson J.S., Kiffney P.M., 2005. Modelling organic matter dynamics in headwater streams of South-Western British Columbia, Canada. Ecol. Model. 183, 463–476.
  • 24. Kelly J.M., Kovar J.L., Sokolowsky R., Moorman T.B. 2007. Phosphorus uptake during four years by different vegetative cover types in a riparian buffer. Nutrient Cycling in Agroecosystems 78, 239–251.
  • 25. Kirschenstein M., Baranowski D. 2008. Annual precipitation and air temperature fluctuations and change tendencies in Słupsk. Dokumentacja Geograficzna 37, 76–82.
  • 26. Krzywy E. 2007. Nutrition of plants. West Pomeranian University of Technology Szczecin Press, Szczecin 178 pp.
  • 27. Lee C.G., Fletcher T.D., Sun G.Z., 2009. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 9(1), 11−22.
  • 28. Osadowski Z., 2006. Threatened, protected and rate species of vascular plants in spring complexes in the central part of Polish Pomeranian. Biodiv. Res. Conserv. 1–2,174–180.
  • 29. Ostrowska A., Porębska G. 2002. Skład chemiczny roślin, jego interpretacja i wykorzystanie w ochronie środowiska. Instytut Ochrony Środowiska, Warszawa.
  • 30. Parzych A. 2010. Azot, fosfor i węgiel w roślinności leśnej Słowińskiego Parku Narodowego w latach 2002–2005. Ochrona Środowiska i Zasobów Naturalnych 43, 45–64.
  • 31. Parzych A., Cymer M., Jonczak J., Szymczyk S. 2015. The ability of leaves and rhizomes of aquatic plants to accumulate macro- and micronutrients. J. Ecol. Eng. 16, 3, 198–205.
  • 32. Parzych A., Jonczak J., Sobisz Z. 2016. Changes of water chemistry in mid-forest headwater streams in the valley of the Kamienna (Middle Pomerania). Sylwan 160 (10), 871–880.
  • 33. Parzych A., Sobisz Z. 2010. Biomasa i produkcja pierwotna netto runa leśnego w wybranych ekosystemach Słowińskiego Parku Narodowego, Ochrona Środowiska i Zasobów Naturalnych 42, 72–83.
  • 34. Parzych A., Jonczak J., Sobisz Z., 2017. Bioaccumulation of macronutrients in the herbaceous plants of mid-forest spring niches. Baltic Forestry 23(2): 384–393.
  • 35. Pielech R., Anioł-Kwiatkowska J., Szczęśniak E. 2015. Landscape-scale factors driving plant species composition in mountain streamside and spring riparian forests. For. Ecol. Manage. 347, 217–227.
  • 36. Rande-Malvi U. 2011. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka J. Agric. Sci. 24(1), 106–109.
  • 37. Samecka-Cymerman A., Kempers A.J. 2001. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes ž former open cut brown coal mines/differing in stage of acidification. Sci. Tot. Environ. 281, 87–98.
  • 38. Sarosiek J., Wożakowska-Natkaniec H. 1993. Chromium and nickel in plants of the Family Lemnaceae and in their environment. In: Chromium, nickel and aluminum – ecological problems and methodical. [Eds. Kabata-Pendias A.], Zeszt. Nauk PAN. Kom. Człowiek i środowisko 5, 49–54.
  • 39. Stoltz E., Greger M. 2002. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot.47, 271–280.
  • 40. Veselkin D.V., Konoplenko M.A., Betekhtina A.A. 2014. Means for soil nutrient uptake in sedges with different ecological strategies. Russ. J. Ecol. 45, 6: 547–554.
  • 41. Yoon J., Cao X., Zhou Q., Ma L.Q. 2006. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci. Total. Environ. 368, 456–464.
  • 42. Yu S., Chen W., He X., Liu Z., Huang Y. 2014. Biomass accumulation and nutrient uptake of 16 riparian woody plant species in Northeast China. J. For. Res. 25(4),773–778.
  • 43. Zang M., Cui L., Sheng L., Wang Y. 2009. Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecol. Eng. 35, 563–569.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c2f6d21-d054-4822-b782-f67c451afea1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.