PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Study of the Detonation Properties, Propellant Impulses, Impact Sensitivities and Synthesis of Nitrated ANTA and NTO Derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrated derivatives of 5-amino-3-nitro-1,2,4-triazole (ANTA) and 3-nitro-1,2,4-triazol-5-one (NTO) were theoretically characterized with respect to their performance as high explosives and rocket propellants. The detonation velocity and the detonation pressure of the derivatives, calculated with EXPLO5 software, were at the same level or slightly above the performance of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). The results showed that compositions of 1,3,4-trinitro-1,2,4-triazol-5-one and glycidyl azide polymer (GAP) could give specific impulses just above 2600 m/s in rocket propellants. The sensitivities of the derivatives were evaluated using their heats of detonation, CHNO-ratios, free space in the crystal lattice and N−NO2 bond dissociation energy. The stability and sensitivity of several of the derivatives could be poor due to the low N−NO2 bond dissociation energies. The N−NO2 bond dissociation energies in the derivatives were calculated to be between 41 and 296 kJ/mol when the M06-2X/6-311+G(2d,p) functional was used. Synthetic routes for the most stable derivatives were proposed. In addition, preliminary studies of the chloride-assisted nitrolysis of NTO were performed. The infrared spectrum of the NTO derivative indicated that N−NO2 bonds were formed.
Słowa kluczowe
Rocznik
Strony
445--467
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • Land Systems Division, Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
autor
  • Land Systems Division, Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
  • Land Systems Division, Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
autor
  • Land Systems Division, Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
Bibliografia
  • [1] Landsem E., Jensen T.L., Hansen F.K., Unneberg E., Kristensen T.E., Mechanical Properties of Smokeless Composite Rocket Propellants Based on Prilled Ammonium Dinitramide, Propellants Explos. Pyrotech., 2012, 37, 691-698.
  • [2] Klapötke T.M., Chemistry of High Energy Materials, Walter de Gruyter GmbH & Co. KG, Berlin/New York, 2011; ISBN 978-3-11-022784-0.
  • [3] Zbarsky V.L., Yudin N.V., Kinetics of the Synthesis of NTO in Nitric Acid, Propellants Explos. Pyrotech., 2005, 30, 298-302.
  • [4] Jadhav H.S., Talawar M.B., Dhavale D.D., Asthana S.N., Krishnamurthy V.N., Synthesis, Characterization and Thermolysis of 2,4-Dihydro-2,4,5-trinitro-3H-1,2,4-triazol-3-one (DTNTO): a New Derivative of 3-Nitro-1,2,4-triazol-5-one (NTO), Indian J. Eng. Mater. Sci., 2005, 12, 467-471.
  • [5] Dippold A.A., Klapötke T.M., Martin F.A., Wiedbrauk S., Nitraminoazoles Based on ANTA – a Comprehensive Study of Structural and Energetic Properties, Eur. J. Inorg. Chem., 2012, 2429-2443.
  • [6] Rui-Zhou Z., Xiao-Hong L., Xiang-Zhou Z., Theoretical Studies on a Series of 1,2,4-Triazole Derivatives as Potential High Energy Density Compounds, J. Chem. Sci., 2012, 124, 995-1006.
  • [7] Ravi P., Tewari S.P., A DFT Study of Tautomers of 3-Amino-1-nitroso-4-nitrotriazol-5-one-2-oxide, J. Mol. Model., 2013, 19, 2539-2547.
  • [8] Wu Q., Zhu W., Xiao H., Quantum Chemical Studies on Three Novel 1,2,4-Triazole N-oxides as Potential Insensitive High Explosives, J. Mol. Model., 2014, 20, 2441.
  • [9] De Paz J.L.G., Ciller J., Structure and Tautomerism of ANTA (Aminonitrotriazole), Propellants Explos. Pyrotech., 1994, 19, 32-41.
  • [10] Turker L., Atalar T., Quantum Chemical Study on 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and Some of its Constitutional Isomers, J. Hazard. Mater., 2006, A137, 1333-1344.
  • [11] Ravi P., Babu B.K., Tewari S.P., Theoretical Investigations on the Structure, Density Thermodynamic and Performance Properties of Amino-, Methyl-, Nitroso- and Nitro-triazolones, J. Mol. Model., 2013, 19, 33-48.
  • [12] Politzer P., Murray J.S., Grice M.E., Desalvo M., Miller E., Calculation of Heats of Sublimation and Solid Phase Heats of Formation, Mol. Phys., 1997, 91, 923-928.
  • [13] Rice B.M., Pai S.V., Hare J.J., Predicting Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, Combust. Flame, 1999, 118, 445-458.
  • [14] Rice B.M., Hare J.J., Byrd E.F.C., Accurate Predictions of Crystal Densities Using Quantum Mechanical Molecular Volumes, J. Phys. Chem., 2007, 11, 10874-10879.
  • [15] Rice B.M., Byrd E.F.C., Evaluation of the Electrostatic Descriptors for Predicting Crystalline Density, J. Comput. Chem., 2013, 34, 2146-2151.
  • [16] Politzer P., Murray J.S., Relationships between Dissociation Energies and Electrostatic Potentials of C-NO2 Bonds: Application to Impact Sensitivities, J. Mol. Struct., 1996, 376, 419-424.
  • [17] Rice B.M., Sahu S., Owens F.J., Density Functional Calculations of Bond Dissociation Energies for NO2 Scission in Some Nitroaromatic Molecules, J. Mol. Struct. (Teochem), 2002, 583, 69-72.
  • [18] Rice B.M., Hare J.J., A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules, J. Phys. Chem. A, 2002, 106, 1770-1783.
  • [19] Ye S., Tonokura K., Koshi M., Energy Transfer Rates and Impact Sensitivities of Crystalline Explosives, Combust. Flame, 2003, 132, 240-246.
  • [20] Tan B., Long X., Peng R., Li H., Jin B., Chu S., Dong H., Two Important Factors Influencing Shock Sensitivity of Nitro Compounds: Bond Dissociation Energy of X-NO2 (X = C, N, O) and Mulliken Charges of Nitro Group, J. Hazard. Mater., 2010, 183, 908-912.
  • [21] Yan Q.L., Zeman S., Theoretical Evaluation of Sensitivity and Thermal Stability for High Explosives Based on Quantum Chemistry Methods: a Brief Review, Int. J. Quantum Chem., 2013, 113, 1049-1061.
  • [22] Chen Z.X., Xiao H.M., Quantum Chemistry Derived Criteria for Impact Sensitivity, Propellants Explos. Pyrotech., 2014, 39, 487-495.
  • [23] Politzer P., Murray J.S., Detonation Performance and Sensitivity: a Quest for Balance, Adv. Quantum Chem., 2014, 1-29.
  • [24] Pagoria P.F., Mitchell A.R., Jessop E.S., Nitroureas II. Synthesis of Bicyclic Monoand Di-nitrourea, Propellants Explos. Pyrotech., 1996, 21, 14-18.
  • [25] Cliff M.D., Dagley I.J., Parker R.P., Synthesis of 2-Nitroimino-5-nitrohexahydro-1,3,5-triazine via Chloride-assisted Nitrolysis of a Tertiary Amine, Propellants Explos. Pyrotech., 1998, 23, 179-181.
  • [26] Myers G.S., Wright G.F., Catalyzed Nitration of Amines: V. The Nitration of Aliphatic Dialkylchloramines, Can. J. Res., 1948, 26, 257-270.
  • [27] Klapötke T.M., Stierstorfer J., Weber B., New Energetic Materials: Synthesis and Characterization of Copper 5-Nitriminotatrazolates, Inorg. Chim. Acta, 2009, 362, 2311-2320.
  • [28] Trzciński W.A., Szala M., Rejmer W., Study of the Heat and Kinetics of Nitration of 1,2,4-Triazolone, Propellants Explos. Pyrotech., 2015, 40, 498-505.
  • [29] Nicolaides A., Rauk A., Glukhovtsev M.N., Radom L., Heats of Formation from G2, G2 (MP2), and G2 (MP2,SVP) Total Energies, J. Phys. Chem., 1996, 100, 17460-17464.
  • [30] Kondo S., Takahashi A., Tokuhashi K., Theoretical Calculation of Heat of Formation and Heat of Combustion for Several Gases, J. Hazard. Mater., 2002, 94, 37-45.
  • [31] Linstrom P.J., Mallard W.G., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899, http:// webbook.nist.gov.
  • [32] Hu A., Larade B., Dudiy S., Abou-Rachid H., Lussier L., Gua H., Theoretical Prediction of Heats of Sublimation of Energetic Materials Using Pseudo-atomic Orbital Density Functional Theory Calculations, Propellants Explos. Pyrotech., 2007, 32, 331-337.
  • [33] Murray J.S., Brinck T., Politzer P., Relationships of Molecular Surface Electrostatic Potentials to Some Macroscopic Properties, Chem. Phys., 1996, 204, 289-299.
  • [34] Murray J.S., Politzer P., Statistical Analysis of the Molecular Surface Electrostatic Potential: an Approach to Describing Non-covalent Interactions in Condensed Phases, J. Mol. Struct., 1998, 425, 107-114.
  • [35] Politzer P., Martinez J., Murray J.S., Concha M.C., Toro-Labbe A., An Electrostatic Interaction Correction for Improved Crystal Density Prediction, Mol. Phys., 2009, 107, 2095-2101.
  • [36] Lu T., Chen F., Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comp. Chem., 2012, 33, 580-592.
  • [37] Lu T., Chen F., Qantitative Analysis of Molecular Surface Based on Improved Marching Tetrahedra Algorithm, J. Mol. Graph. Model., 2012, 38, 314-323.
  • [38] Suceska M., EXPLO5, Version 5.05, 2010, Zagreb.
  • [39] Sanford G., McBride B.J., Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis 1994, Vol. 1331, NASA Reference Publication.
  • [40] Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
  • [41] Politzer P., Murray J.S., Some Molecular/Crystalline Factors that Affect the Sensitivities of Energetic Materials: Molecular Surface Electrostatic Potentials, Lattice Free Space and Maximum Heat of Detonation per Unit Volume, J. Mol. Model., 2015, 21, 25.
  • [42] Fried L.E., Manaa M.R., Pagoria P.F., Simpson R.L., Design and Synthesis of Energetic Materials, Annu. Rev. Mater. Sci., 2001, 31, 291-321.
  • [43] Politzer P., Murray J.S., Impact Sensitivity and the Maximum Heat of Detonation, J. Mol. Model., 2015, 21, 262.
  • [44] Green Energetic Materials, (Brinck T., Ed.), John Wiley & Sons, Chichester, West Sussex, 2014, Chap. 2, p. 17; ISBN 978-1-119-94129-3.
  • [45] Yao X.Q., Hou X.J., Jiao H., Xiang H.W., Li Y.W., Accurate Calculations of Bond Dissociation Enthalpies with Density Functional Methods, J. Phys. Chem. A, 2003, 107, 9991-9996.
  • [46] Zhao Y., Truhlar D.G., How Well Can New-Generation Density Functionals Describe the Energetics of Bond-dissociation Reactions Producing Radicals, J. Phys. Chem. A, 2008, 112, 1095-1099.
  • [47] Keshavarz M.H., A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds, Propellants Explos. Pyrotech., 2013, 38, 754-760.
  • [48] Meyer R., Köhler J., Homborg A., Explosives, 6th ed., Wiley-VCH, Weinheim, 2007; ISBN 978-3-527-31656-4.
  • [49] Lee K.Y., Storm C.B., Hiskey M.A., Coburn M.D., An Improved Synthesis of 5-Amino-3-nitro-1H-1,2,4-triazole (ANTA), a Useful Intermediate for the Preparation of Insensitive High Explosive, J. Energ. Mater., 1991, 9, 415-428.
  • [50] ICT Database for Thermochemical Values (Demo version), Fraunhofer ICT, Pfinztal, 2007.
  • [51] Pagoria P.F., Lee G.S., Mitchell A.R., Schmidt R.D., A Review of Energetic Materials Synthesis, Thermochim. Acta, 2002, 384, 187-204.
  • [52] Syczwenski M., Cieślowska-Glińska I., Boniuk H., Synthesis and Properties of Dinitrourea (DNU) and its Salts, Propellants Explos. Pyrotech., 1998, 23, 155-158.
  • [53] Chemistry and Physics of Energetic Materials, (Bulusu S.N., Ed.), Kluwer Academic Publishers, Dordrecht/Boston/London, 1990, p. 282; ISBN 978-0-7923- 0745-7.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c2c6ece-6382-4b72-b6b6-73c8d4fd60dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.