PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation model of pipeline resistance for cemented paste backfill considering thixotropy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rheological behaviour of cemented paste backfill (CPB) has an important influence on the stability of its transportation in pipelines. In the present study, the time-dependent rheological behaviour of CPB was investigated to elucidate the effects of time and solid content. Experimental results showed that when CPB is subjected to a constant shear rate, the shear stress gradually decreases with time before finally stabilis ing. When the solid content was 60%~62%, a liquid network structure was the main factor that influenced the thixotropy of CPB, and the solid content had less influence. When the solid content was 64%~66%, a floc network structure was the main factor that influenced the thixotropy of CPB, and the solid content had a more significant influence on the thixotropy than the shear rate. The initial structural stability of CPB increased with the solid content, and this relationship can be described by a power function. Based on the experimental results, a calculation model of pipeline resistance considering thixotropy was proposed. The model was validated by using industrial experimental data. The current study can serve as a design reference for CPB pipeline transportation.
Rocznik
Strony
303--316
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
  • North China University of Science and Technology, College of Mining Engineering, China
autor
  • North China University of Science and Technology, College of Mining Engineering, China
autor
  • North China University of Science and Technology, College of Mining Engineering, China
autor
  • North China University of Science and Technology, College of Mining Engineering, China
  • North China University of Science and Technology, College of Mining Engineering, China
Bibliografia
  • [1] M. Benzaazoua, B. Bussiere, I. Demers, M. Aubertin, E. Fried, A. Blier, Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Miner. Eng. 21, 4, 330-340 (2008). DOI: https://doi.org/10.1016/j.mineng.2007.11.012.
  • [2] X. Zhao, A. Fourie, C.C. Qi, Mechanics and safety issues in tailing-based backfill: A review. International Journal of Minerals Metallurgy and Materials 27, 9, 1165-1178 (2020). DOI: https://doi.org/10.1007/s12613-020-2004-5.
  • [3] D.M. Huang, D.Q. Xing, X.K. Chang, Y.Y. Zhu, C.J. Gao, Analysis and application of filling mining technology in china’s mining area: A case study of yuxing coal mine. Arch. Min. Sci. 66, 4, 611-624 (2021). DOI: https://doi.org/10.24425/ams.2021.139600.
  • [4] W.B. Xing, W.P. Huang, F. Feng, Research on application of strip backfilling mining technology – a case study. Arch. Min. Sci. 66, 4, 595-609 (2021). DOI: https://doi.org/10.24425/ams.2021.139599.
  • [5] H.Z. Jiao, S.F. Wang, Y.X. Yang, X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J. Cleaner. Prod. 245, (2020). DOI: https://doi.org/10.1016/j.jclepro.2019.118882.
  • [6] L. Orejarena, M. Fall, Artificial neural network based modeling of the coupled effect of sulphate and temperature on the strength of cemented paste backfill. CaJCE 38, 1, 100-109 (2011). DOI: https://doi.org/10.1139/l10-109.
  • [7] K. Klein, D. Simon, Effect of specimen composition on the strength development in cemented paste backfill. CaGeJ 43, 3, 310-324 (2006). DOI: https://doi.org/10.1139/t06-005.
  • [8] W.C. Li, M. Fall, Sulphate effect on the early age strength and self-desiccation of cemented paste backfill. Constr. Build. Mater. 106, 296-304 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.124.
  • [9] H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement. International Journal of Minerals Metallurgy and Materials 26, 12, 1594-1603 (2019). DOI: https://doi.org/10.1007/s12613-019-1901-y.
  • [10] D. Wu, S.J. Cai, G. Huang, Coupled effect of cement hydration and temperature on rheological properties of fresh cemented tailings backfill slurry. Transactions of Nonferrous Metals Society of China 24, 9, 2954-2963 (2014). DOI: https://doi.org/10.1016/s1003-6326(14)63431-2.
  • [11] Q.D. Nguyen, D.V. Boger. Application of rheology to solving tailings disposal problems. Int. J. Miner. Process 54, 3-4, 217-233 (1998). DOI: https://doi.org/10.1016/s0301-7516(98)00011-8.
  • [12] N. Gharib, B. Bharathan, L. Amiri, M. McGuinness, F.P. Hassani, A.P. Sasmito, Flow characteristics and wear prediction of Herschel-Bulkley non-Newtonian paste backfill in pipe elbows. CJChE 95, 6, 1181-1191 (2017). DOI: https://doi.org/10.1002/cjce.22749.
  • [13] Q.S. Chen, Q.L. Zhang, X.M. Wang, C.C. Xiao, Q. Hu, A hydraulic gradient model of paste-like crude tailings backfill slurry transported by a pipeline system. Environmental Earth Sciences 75, 14 (2016). DOI: https://doi.org/10.1007/s12665-016-5895-8.
  • [14] R. deKretser, P.J. Scales, D.V. Boger, Improving clay-based tailings disposal: Case study on coal tailings. AIChE 43, 7, 1894-1903 (1997). DOI: https://doi.org/10.1002/aic.690430724.
  • [15] R.G. Gao, K.P. Zhou, Y.L. Zhou, C. Yang, Research on the fluid characteristics of cemented backfill pipeline transportation of mineral processing tailings. Alexandria Engineering Journal 59, 6, 4409-4426 (2020). DOI: https://doi.org/10.1016/j.aej.2020.07.047.
  • [16] B. Bharathan, M. McGuinness, S. Kuhar, M. Kermani, F.P. Hassani, A.P. Sasmito, Pressure loss and friction factor in non-Newtonian mine paste backfill: Modelling, loop test and mine field data. Powder Technol. 344, 443-453 (2019). DOI: https://doi.org/10.1016/j.powtec.2018.12.029.
  • [17] H.Y. Cheng, S.C. Wu, H. Li, X.Q. Zhang, Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr. Build. Mater. 231 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117117.
  • [18] X.B. Yang, B.L. Xiao, Q. Gao, J.Y. He, Determining the pressure drop of cemented Gobi sand and tailings paste backfill in a pipe flow. Constr. Build. Mater. 255 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2020.119371.
  • [19] D. Wu, M. Fall, S.-J. Cai, Coupled Modeling of Temperature Distribution and Evolution in Cemented Tailings Backfill Structures that Contain Mineral Admixtures. Geotech. Geol. Eng. 30, 4 (2012).
  • [20] A.X. Wu, Y. Wang, H.J. Wang, S.H. Yin, X.X. Miao, Coupled effects of cement type and water quality on the properties of cemented paste backfill. Int. J. Miner. Process 143, 65-71 (2015). DOI: https://doi.org/10.1016/j.minpro.2015.09.004.
  • [21] N. Cruz, Y.J. Peng, Rheology measurements for flotation slurries with high clay contents – A critical review. Miner. Eng. 98, 137-150 (2016). DOI: https://doi.org/10.1016/j.mineng.2016.08.011.
  • [22] D. Wu, R.K. Zhao, C.W. Xie, S. Liu, Effect of curing humidity on performance of cemented paste backfill. International Journal of Minerals Metallurgy and Materials 27, 8, 1046-1053 (2020). DOI: https://doi.org/10.1007/s12613-020-1970-y.
  • [23] S. Cao, E. Yilmaz, W.D. Song, Evaluation of Viscosity, Strength and Microstructural Properties of Cemented Tailings Backfill. Minerals 8, 8 (2018). DOI: https://doi.org/ARTN 35210.3390/min8080352.
  • [24] H.Q. Jiang, M. Fall, E. Yilmaz, Y.H. Li, L. Yang, Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy. Powder Technol. 372, 258-266 (2020). DOI: https://doi.org/10.1016/j.powtec.2020.06.009.
  • [25] Z.B. Guo, J.P. Qiu, H.Q. Jiang, J. Xing, X.G. Sun, Z.Y. Ma. Flowability of ultrafine-tailings cemented paste backfill incorporating superplasticizer: Insight from water film thickness theory. Powder Technol. 381, 509-517 (2021). DOI: https://doi.org/10.1016/j.powtec.2020.12.035.
  • [26] K. Dullaert, J. Mewis, A structural kinetics model for thixotropy. J. Non-Newtonian Fluid Mech. 139, 1-2, 21-30 (2006). DOI: https://doi.org/10.1016/j.jnnfm.2006.06.002.
  • [27] H.A. Barnes, Thixotropy – A review. J. Non-Newtonian Fluid Mech. 70, 1-2, 1-33 (1997). DOI: https://doi.org/10.1016/s0377-0257(97)00004-9.
  • [28] N. Roussel, G. Ovarlez, S. Garrault, C. Brumaud, The origins of thixotropy of fresh cement pastes. Cem. Concr. Res. 42, 1, 148-157 (2012). DOI: https://doi.org/10.1016/j.cemconres.2011.09.004.
  • [29] J. Mewis, N.J. Wagner, Thixotropy. Adv. Colloid. Interface Sci. 147-48, 214-227 (2009). DOI: https://doi.org/10.1016/j.cis.2008.09.005.
  • [30] Z.L. Xue, D.Q. Gan, Y.Z. Zhang, Z.Y. Liu, Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions. Constr. Build. Mater. 253 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2020.119212.
  • [31] S. Lim, K.H. Ahn, S.J. Lee, A. Kumar, N. Duan, X.D. Sun, et al., Yield and flow measurement of fine and coarse binary particulate mineral slurries. Int. J. Miner. Process 119, 6-15 (2013). DOI: https://doi.org/10.1016/j.minpro.2012.12.009.
  • [32] X.M. Wang, J.X. Li, Z.Z. Xiao, W.G. Xiao, Rheological properties of tailing paste slurry. Journal of Central South University of Technology 11, 1, 75-79 (2004). DOI: https://doi.org/10.1007/s11771-004-0016-3.
  • [33] X.J. Deng, B. Klein, J.X. Zhang, D. Hallbom, B. de Wit, Time-dependent rheological behaviour of cemented backfill mixture. International Journal of Mining Reclamation and Environment 32, 3, 145-162 (2018). DOI: https://doi.org/10.1080/17480930.2016.1239305.
  • [34] D. Simon, M. Grabinsky, Apparent yield stress measurement in cemented paste backfill. International Journal of Mining Reclamation and Environment 27, 4, 231-256 (2013). DOI: https://doi.org/10.1080/17480930.2012.680754.
  • [35] R. Neelakantan, G.F. Vaezi, R.S. Sanders, Effect of shear on the yield stress and aggregate structure of flocculant dosed, concentrated kaolinite suspensions. Miner. Eng. 123, 95-103 (2018). DOI: https://doi.org/10.1016/j.mineng.2018.03.016.
  • [36] X. Li, Z.C. Grasley, E.J. Garboczi, J.W. Bullard, Simulation of the influence of intrinsic C-S-H aging on time dependent relaxation of hydrating cement paste. Constr. Build. Mater. 157, 1024-1031 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.178.
  • [37] Q. Yuan, D.J. Zhou, B.Y. Li, H. Huang, C.J. Shi, Effect of mineral admixtures on the structural build-up of cement paste. Constr. Build. Mater. 160, 117-126 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.050.
  • [38] Y. Qian, S. Kawashima, Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cem. Concr. Res. 90, 73-79 (2016). DOI: https://doi.org/10.1016/j.cemconres.2016.09.005.
  • [39] M.Z. He, Y.M. Wang, E. Forssberg, Slurry rheology in wet ultrafine grinding of industrial minerals: a review. Powder Technol. 147, 1-3, 94-112 (2004). DOI: https://doi.org/10.1016/j.powtec.2004.09.032.
  • [40] M.Z. Li, Y.P. He, Y.D. Liu, C. Huang, Effect of interaction of particles with different sizes on particle kinetics in multi-sized slurry transport by pipeline. Powder Technol. 338, 915-930 (2018). DOI: https://doi.org/10.1016/j.powtec.2018.07.088.
  • [41] J. Sobota, J.X. Xia, E. Kirichenko, Dynamic states equations of transport pipeline in deep-sea mining. Arch. Min. Sci. 66, 3, 385-392 (2021). DOI: https://doi.org/10.24425/ams.2021.138595.
  • [42] J.W. Bian, Q.L. Zhang, H. Wang, Pipeline hydraulic gradient model of paste-like based on L-pipe experiments. Journal of China University of Mining and Technology 48, 1, 23-28 (2019). (in Chinese) doi:10.13247/j.cnki. jcumt.000962.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c29b85b-9d0b-4fd4-917b-6492fb6ad115
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.