PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study on control strategy of a single cell proton conducting solid oxide fuel cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to examine a control strategy for a single proton conducting solid oxide fuel cell (H+SOFC). The study is based on a dynamic model originating from the steady state reduced order model of H+SOFC. The proposed control strategy is based on a singular PID controller that controls the amount of air delivered to the cathode side of the fuel cell. Additionally, fuel mass flow is correlated with current density to achieve a fixed fuel utilization factor. The concept was tested on typical operating scenarios such as load-follow mode. The study revealed that the singular PID controller is reliable and ensures a safe H+SOFC operation.
Rocznik
Strony
175--182
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Warsaw University, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska Street, 00-665 Warsaw, Poland
Bibliografia
  • [1] Sazali N, Salleh WNW, Jamaludin AS, Razali MNM. New Perspectives on Fuel Cell Technology: A Brief Review. Membr 2020, Vol 10, Page 99 2020;10:99. https://doi.org/10.3390/MEMBRANES10050099.
  • [2] Campanari S, Manzolini G, Chiesa P. Using MCFC for high efficiency CO2 capture from natural gas combined cycles: Comparison of internal and external reforming. Appl Energy 2013. https://doi.org/10.1016/j.apenergy.2013.01.045.
  • [3] Mastropasqua L, Pierangelo L, Spinelli M, Romano MC, Campanari S, Consonni S. Molten Carbonate Fuel Cells retrofits for CO2 capture and enhanced energy production in the steel industry. Int J Greenh Gas Control 2019;88:195-208. https://doi.org/10.1016/J.IJGGC.2019.05.033.
  • [4] Wang F, Deng S, Zhang H, Wang J, Zhao J, Miao H, et al. A comprehensive review on high-temperature fuel cells with carbon capture. Appl Energy 2020;275:115342. https://doi.org/10.1016/j.apenergy.2020.115342.
  • [5] Abdalla AM, Hossain S, Petra PM, Ghasemi M, Azad AK. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Front Energy 2018. https://doi.org/10.1007/s11708-018-0546-2.
  • [6] Singh M, Zappa D, Comini E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int J Hydrogen Energy 2021;46:27643-74. https://doi.org/10.1016/J.IJHYDENE.2021.06.020.
  • [7] Roshandel R, Golzar F, Astaneh M. Technical economic and environmental optimization of combined heat and power systems based on solid oxide fuel cell for a greenhouse case study. Energy Convers Manag 2018;164:144-56. https://doi.org/10.1016/j.enconman.2018.02.023.
  • [8] Danilov NA, Tarutin AP, Lyagaeva JG, Pikalova EY, Murashkina AA, Medvedev DA, et al. Affinity of YBaCo4O7+δ-based layered cobaltites with protonic conductors of cerate-zirconate family. Ceram Int 2017;43:15418–23. https://doi.org/10.1016/J.CERAMINT.2017.08.083.
  • [9] De Lorenzo G, Fragiacomo P. Electrical and thermal analysis of an intermediate temperature IIR-SOFC system fed by biogas. ENERGY Sci Eng 2018;6:60-72. https://doi.org/10.1002/ese3.187
  • [10] Genc O, Toros S, Timurkutluk B. Geometric optimization of an ejector for a 4~{kW} {SOFC} system with anode off-gas recycle. Int J Hydrogen Energy 2018;43:9413-22. https://doi.org/10.1016/j.ijhydene.2018.03.213.
  • [11] Recalde M, Woudstra T, Aravind P V. Renewed sanitation technology: A highly efficient faecal-sludge gasification{\textendash}solid oxide fuel cell power plant. Appl Energy 2018;222:515-29. https://doi.org/10.1016/j.apenergy.2018.03.175.
  • [12] Perez-Trujillo JP, Elizalde-Blancas F, Pietra M Della, McPhail SJ. A numerical and experimental comparison of a single reversible molten carbonate cell operating in fuel cell mode and electrolysis mode. Appl Energy 2018;226:1037-55. https://doi.org/10.1016/j.apenergy.2018.05.121.
  • [13] Szczęśniak A, Milewski J, Szabłowski Ł, Bujalski W, Dybiński O. Dynamic model of a molten carbonate fuel cell 1 kW stack. Energy 2020;200:117442. https://doi.org/10.1016/j.energy.2020.117442.
  • [14] Szabłowski Łukasz, Milewski J. Dynamic analysis of compressed air energy storage in the car. J Power Technol 2011;91:23-36.
  • [15] Szczȩśniak A, Milewski J, Szabłowski Ł, Dybiński O, Futyma K. Numerical Analysis of a Molten Carbonate Fuel Cell Stack in Emergency Scenarios. J Energy Resour Technol Trans ASME 2020;142. https://doi.org/10.1115/1.4048058.
  • [16] Chen J, Liang M, Zhang H, Weng S. Study on control strategy for a SOFC-GT hybrid system with anode and cathode recirculation loops. Int J Hydrogen Energy 2017;42:29422-32. https://doi.org/10.1016/j.ijhydene.2017.09.165.
  • [17] Lee D, Quach TQ, Israel TP, Ahn KY, Bae Y, Kim YS. Analysis of start-up behavior based on the dynamic simulation of an SOFC–engine hybrid system. Energy Convers Manag 2022;272:116384. https://doi.org/10.1016/J.ENCONMAN.2022.116384.
  • [18] Wang X, Lv X, Mi X, Spataru C, Weng Y. Coordinated control approach for load following operation of SOFC-GT hybrid system. Energy 2022;248:123548. https://doi.org/10.1016/J.ENERGY.2022.123548.
  • [19] Yang B, Li Y, Li J, Shu H, Zhao X, Ren Y, et al. Comprehensive summary of solid oxide fuel cell control: a state-of-the-art review. Prot Control Mod Power Syst 2022;7:36. https://doi.org/10.1186/s41601-022-00251-0.
  • [20] Milewski J, Szczęśniak A. Off-design operation of a proton conducting solid oxide fuel cell. Appl Therm Eng 2022;212:118599. https://doi.org/10.1016/j.applthermaleng.2022.118599.
  • [21] Milewski J, Szczęśniak A. A reduced order model of proton conducting Solid Oxide Fuel Cell: A proposal. Energy Convers Manag 2021;236:114050. https://doi.org/10.1016/j.enconman.2021.114050.
  • [22] Milewski J, Szczęśniak A, Szabłowski Ł. A proton conducting solid oxide fuel cell-implementation of the reduced order model in available software and verification based on experimental data. J Power Sources 2021;502:229948. https://doi.org/10.1016/j.jpowsour.2021.229948.
  • [23] Milewski J, Szczęśniak A, Szabłowski Ł, Bernat R. Key Parameters of Proton‐conducting Solid Oxide Fuel Cells from the Perspective of Coherence with Models. Fuel Cells 2020:fuce.201900077. https://doi.org/10.1002/fuce.201900077.
  • [24] Milewski J, Szcz\keśniak A, Szablowski L. A discussion on mathematical models of proton conducting Solid Oxide Fuel Cells. Int J Hydrogen Energy 2019;44:10925-32.
  • [25] Zhu A, Zhang G, Wan T, Shi T, Wang H, Wu M, et al. Evaluation of SrSc0. 175Nb0. 025Co0. 8O3-$δ$ perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance. Electrochim Acta 2018;259:559-65.
  • [26] Milewski J, Szczęśniak A, Lewandowski J. Dynamic characteristics of auxiliary equipment of SOFC/SOEC hydrogen peak power plant. IERI Procedia 2014;9:82-7.
  • [27] Milewski J, Szabłowski Ł, Szczęśniak A. Key parameters of proton conducting Solid Oxide Fuel Cells from power plant point of view n.d.:2-4.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c29678e-667a-4976-b02e-64bae2133e6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.