PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and statistical analysis of blast-induced ground vibrations (BIGV) prediction in Senegal's quarry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Extractive industries often use explosives to destroy rocks, and productivity requirements tend to increase the charges of the explosives. The blasts induce vibrations, which result in a potential damage of the surrounding structures. Therefore, the prediction of vibrations should be described with accuracy, in order to ensure the safety of engineered structures. However, the prediction of vibrations' levels remain a complicated issue, because it involves numerous parameters correlated to the quarry site. In this paper, statistical analysis based on the peak particle velocity (PPV) and the attenuation law has been carried out to assess the safety charges (Q) for different distances (R) between the blast and the considered structure to secure. Moreover, the experimental investigations were conducted on the quarry site of "Sococim", which is located on the south coast of Senegal. To ensure the safety of the "Conveyor belt" and "Panel 1 (Upper exploitation level)" sites, the PPV should be less than 10 mm/s. In fact, the attenuation model has been used to assess the safe charge weights of the explosive (Q) to be used at the "Conveyor belt" site and at the "Panel 1 (Upper exploitation level)" site. Therefore, the safe charge weights per delay (Q) were respectively 116 kg and 13.75 kg.
Wydawca
Rocznik
Strony
231--246
Opis fizyczny
Bibliogr. 51 poz., tab., rys.
Twórcy
autor
  • Université Moulay Ismail (UMI), Laboratoire d’Etude des Matériaux Avancés et Applications (LEM2A), Ecole Supérieure de Technologie de Meknès, Km 5, route d’Agouray, N6, 50040, Morocco
  • Université Moulay Ismail (UMI), Laboratoire d’Etude des Matériaux Avancés et Applications (LEM2A), Ecole Supérieure de Technologie de Meknès, Km 5, route d’Agouray, N6, 50040, Morocco
autor
  • Université Moulay Ismail (UMI), Laboratoire d’Etude des Matériaux Avancés et Applications (LEM2A), Ecole Supérieure de Technologie de Meknès, Km 5, route d’Agouray, N6, 50040, Morocco
  • Université Sidi Mohamed Ben Abdellah (USMBA), Ecole Supérieure de Technologie de Fès, Route d’Imouzzer BP, 2427, Morocco
  • Université Moulay Ismail (UMI), Laboratoire d’Etude des Matériaux Avancés et Applications (LEM2A), Ecole Supérieure de Technologie de Meknès, Km 5, route d’Agouray, N6, 50040, Morocco
Bibliografia
  • [1] L. Ma, Z. Li, J. Liu, L. Duan, J. Wu, Mechanical properties of coral concrete subjected to uniaxial dynamic compression, Construction and Building Materials 199 (2019) 244 – 255. doi:https://doi.org/10.1016/j.conbuildmat.2018.12.032. URL http://www.sciencedirect.com/science/article/pii/ S0950061818330125
  • [2] H. Agrawal, A. Mishra, Probabilistic analysis on scattering effect of initiation systems and concept of modified charge per delay for prediction of blast induced ground vibrations, Measurement 130 (2018) 306–317. doi: https://doi.org/10.1016/j.measurement.2018.08.032. URL http://www.sciencedirect.com/science/article/pii/S0263224118307759
  • [3] B. Duan, H. Xia, X. Yang, Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways, Tunneling and Underground Space Technology 71 (2018) 605–622. doi:https://doi.org/10.1016/j.tust.2017.10.012. URL http://www.sciencedirect.com/science/article/pii/ S0886779817303371
  • [4] C. E. Anderson Jr, T. Behner, C. E. Weiss, Mine blast loading experiments, International Journal of Impact Engineering 38 (8-9) (2011) 697–706.
  • [5] T. Ngo, P. Mendis, A. Gupta, J. Ramsay, Blast loading and blast effects on structures–an overview, Electronic Journal of Structural Engineering 7 (S1) (2007) 76–91.
  • [6] M. Monjezi, M. Hasanipanah, M. Khandelwal, Evaluation and prediction of blast-induced ground vibration at shur river dam, iran, by artificial neural network, Neural Computing and Applications 22 (7-8) (2013) 1637–1643.
  • [7] H. R. Nicholls, C. F. Johnson, W. I. Duvall, Blasting vibrations and their effects on structures, US Government Printers, 1971.
  • [8] J. F. Wiss, Control of vibration and blast noise from surface coal mining, Bureau of Mines, Open File Rept.
  • [9] R. Kumar, D. Choudhury, K. Bhargava, Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties, Journal of Rock Mechanics and Geotechnical Engineering 8 (3) (2016) 341–349.
  • [10] R. Nateghi, Prediction of ground vibration level induced by blasting at different rock units, International Journal of Rock Mechanics and Mining Sciences 48 (6) (2011) 899–908.
  • [11] H. Hao, Y. Wu, G. Ma, Y. Zhou, Characteristics of surface ground motions induced by blasts in jointed rock mass, Soil Dynamics and Earthquake Engineering 21 (2) (2001) 85–98.
  • [12] M. King, L. Myer, J. Rezowalli, Experimental studies of elastic-wave propagation in a columnar-jointed rock mass, Geophysical prospecting 34 (8) (1986) 1185–1199.
  • [13] M. Khandelwal, T. Singh, Prediction of blast-induced ground vibration using artificial neural network, International Journal of Rock Mechanics and Mining Sciences 46 (7) (2009) 1214–1222.
  • [14] M. Monjezi, M. Ghafurikalajahi, A. Bahrami, Prediction of blast-induced ground vibration using artificial neural networks, Tunnelling and Underground Space Technology 26 (1) (2011) 46–50.
  • [15] J. Torano, R. Rodriguez, Simulation of the vibrations produced during the rock excavation by different methods, WIT Transactions on Modelling and Simulation 33.
  • [16] Y. S. Chae, Design of excavation blasts to prevent damage, Civil Engineering 48 (4).
  • [17] W. I. Duvall, D. E. Fogelson, Review of criteria for estimating damage to residences from blasting vibrations, US Department of the Interior, Bureau of Mines, 1962.
  • [18] A. T. Edwards, T. Northwood, Experimental studies of the effects of blasting on structures, Division of Building Research, National Research Council, 1960.
  • [19] U. S. B. of Mines, D. Siskind, Structure response and damage produced by ground vibration from surface mine blasting, US Department of the Interior, Bureau of Mines New York, 1980.
  • [20] K. Avellan, E. Belopotocanova, M. Puurunen, Measuring, monitoring and prediction of vibration effects in rock masses in near-structure blasting, Procedia engineering 191 (2017) 504–511.
  • [21] J. Guggenberger, G. Müller, Erschütterungen, in: Taschenbuch der Technischen Akustik, Springer, 2004, pp. 767–801.
  • [22] M. Khandelwal, T. Singh, Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach, Journal of sound and vibration 289 (4-5) (2006) 711–725.
  • [23] Y. Zeng, H. Li, X. Xia, B. Liu, H. Zuo, J. Jiang, Blast-induced rock damage control in fangchenggang nuclear power station, china, Journal of Rock Mechanics and Geotechnical Engineering 10 (5) (2018) 914–923.
  • [24] X. Zhao, G. Wang, W. Lu, M. Chen, P. Yan, C. Zhou, Effects of close proximity underwater explosion on the nonlinear dynamic response of concrete gravity dams with orifices, Engineering Failure Analysis 92 (2018) 566–586.
  • [25] B. Elevli, E. Arpaz, Evaluation of parameters affected on the blast induced ground vibration (bigv) by using relation diagram method (rdm), Acta Montanistica Slovaca 15 (4) (2010) 261.
  • [26] H. Koch, Zur möglichkeit der abgrenzung von lademengen bei steinbruchsprengungen nach festgestellten erschütterungsstärken, Nobel Hefte 24 (1958) 92–96.
  • [27] G. Athanasopoulos, P. Pelekis, Ground vibrations from sheetpile driving in urban environment: measurements, analysis and effects on buildings and occupants, Soil dynamics and earthquake engineering 19 (5) (2000) 371–387.
  • [28] W. I. Duvall, B. Petkof, Spherical propagation of explosion-generated strain pulses in rock, Tech. rep., Bureau of Mines (1958).
  • [29] A. Ghosh, J. J. Daemen, Statistics–a key to better blast vibration predictions, in: Proceedings of the 26th US Symposium on Rock Mechanics, Rapid City, 1985, pp. 1141–1149.
  • [30] R. Gupta, P. P. Roy, B. Singh, On a blast induced blast vibration predictor for efficient blasting, in: Proceedings of the 22nd international conference of safety in Mines, Beijing, China, 1988, pp. 1015–1021.
  • [31] P. Roy, Putting ground vibration predictions into practice, Colliery Guardian 241 (2) (1993) 63–7.
  • [32] B. Müller, J. Hausmann, H. Niedzwiedz, Comparison of different methods of measuring and calculating blast vibrations in rock masses, in: The 4th EFEE World Conference, Vienna, 2007.
  • [33] M. Monjezi, H. A. Khoshalan, A. Y. Varjani, Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach, Arabian Journal of Geosciences 5 (3) (2012) 441–448.
  • [34] P. P. Roy, Vibration control in an opencast mine based on improved blast vibration predictors, Mining Science and Technology 12 (2) (1991) 157–165.
  • [35] U. Langefors, B. Kihlstrom, The modern techniques of rock blasting. john wiely and sons, Inc, New York, 438pp.
  • [36] S. Murmu, P. Maheshwari, H. K. Verma, Empirical and probabilistic analysis of blast-induced ground vibrations, International Journal of Rock Mechanics and Mining Sciences 103 (2018) 267–274.
  • [37] N. Ambraseys, A. Hendron, Dynamic behaviour of rock masses, Rock Mechanics in Engineering Practice (1968) 203–207.
  • [38] R. Rai, T. Singh, A new predictor for ground vibration prediction and its comparison with other predictors, Indian Journal of Engineering and Materials Sciences 11 (3) (2004) 178–184, cited By 30. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-6344246317&partnerID=40&md5=2aebef919c 009924f500c07622f81484
  • [39] I. Indian Standard, Criteria for safety and design of structures subjected to underground blast, Bulletin No: IS-6922, Bureau of Indian Standards, New Delhi, India.
  • [40] H. Ak, A. Konuk, The effect of discontinuity frequency on ground vibrations produced from bench blasting: a case study, Soil Dynamics and Earthquake Engineering 28 (9) (2008) 686–694.
  • [41] A. Ghosh, J. J. Daemen, et al., A simple new blast vibration predictor (based on wave propagation laws), in: The 24th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, 1983.
  • [42] G. M. Simangunsong, S. Wahyudi, Effect of bedding plane on prediction blast-induced ground vibration in open pit coal mines, International Journal of Rock Mechanics and Mining Sciences (79) (2015) 1–8.
  • [43] M. Iphar, M. Yavuz, H. Ak, Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system, Environmental Geology 56 (1) (2008) 97–107.
  • [44] C. Coulombez, Analyse et optimisation des pratiques d'abattage a l'explosif dans une carriere de granulats.
  • [45] B. Skipp, Ground vibration–codes and standards, Ground dynamics and man-made processes. The Institution of Civil Engineers, United Kingdom (1998) 29–41.
  • [46] C. H. Dowding, R. D. Hryciw, A laboratory study of blast densification of saturated sand, Journal of Geotechnical Engineering 112 (2) (1986) 187–199.
  • [47] A. P. J.F. SEMBLAT, Waves and vibrations in soils: Earthquakes, traffic, shocks, construction works.
  • [48] D. Grothe, P. Reinders, Advanced vibration management in quarries using a predictive blast vibration model, Vienna Conference Proceedings, European Federation of Explosives Engineers, UK (2007) 93–106.
  • [49] D. Park, B. Jeon, S. Jeon, A numerical study on the screening of blast-induced waves for reducing ground vibration, Rock mechanics and rock engineering 42 (3) (2009) 449–473.
  • [50] M. Ramulu, A. Raina, A. Chakraborty, A. Reddy, J. Jethwa, Influence of burden on the intensity of ground vibrations in a limestone quarry, in: Proceedings of the International Conference fragmentation and blasting, Fragblast, 2002, pp. 617–624.
  • [51] T. B. Afeni, S. K. Osasan, Assessment of noise and ground vibration induced during blasting operations in an open pit mine — a case study on Ewekoro limestone quarry, Nigeria, Mining Science and Technology (China) 19 (4) (2009) 420 – 424. doi:https://doi.org/10.1016/S1674-5264(09)60078- 8. URL http://www.sciencedirect.com/science/article/pii/ S1674526409600788
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c2644d9-58d2-4038-ad4d-4ff82779d51e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.