PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short-term changes in phytoplankton assemblages and their potential for heavy metal bioaccumulation : a laboratory study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focused on phytoplankton changes in polluted waters of Lake Manzala and the assessment of heavy metal bioaccumulation capacity during the 15-day laboratory experiment. Phytoplankton samples were analyzed every day and the concentration of zinc, iron and lead in water, in phytoplankton and in filtrate – every fifth day of the experiment. Significantly higher phytoplankton abundance was recorded in water from the El-Boom station (basin I) compared to the New Bahr El-Baqar drain (basin II), followed by distinct differences in its composition and chlorophyll content. However, the most abundant species were the same in both basins, i.e. Chroococcus minor, Microcystis aeruginosa, Actinoptychus octonarius, Aulacoseira granulata, Pantocsekiella ocellata, Kirchneriella obesa and Nephrocytium limneticum. Water in basin I was more polluted with heavy metals compared to basin II. Basin I was characterized by the dominance of cyanobacteria and high relative abundance of chlorophytes compared to basin II, where either cyanobacteria and/or diatoms dominated in the phytoplankton. In the former basin, the highest uptake factors (UFs) were recorded for iron and zinc and the lowest UF for lead. In basin II, the highest UF was determined for zinc, but relatively high UFs were recorded also for iron and lead. The presented results suggest that phytoplankton can contribute to natural biosorbents of heavy metals in Egyptian lakes.
Rocznik
Strony
260--274
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
  • National Institute of Oceanography and Fisheries (NIOF)101 El Kasr El Aini St., Cairo, Egypt
  • National Institute of Oceanography and Fisheries (NIOF)101 El Kasr El Aini St., Cairo, Egypt
  • Department of Hydrobiology, Inland Fisheries Institute, Oczapowskiego 10, 10-719 Olsztyn, Poland
autor
  • National Institute of Oceanography and Fisheries (NIOF)101 El Kasr El Aini St., Cairo, Egypt
Bibliografia
  • [1]. Abdel-Fattah, M.K. & Helmy, A.M. (2015). Assessment of Water Quality of Wastewaters of Bahr El-Baqar, Bilbies and El-Qalyubia Drains in East Delta, Egypt for Irrigation Purposes. Egypt. J. Soil Sci. 55(3): 287–302.
  • [2]. Abdel-Shafy, H.I. & Aly, R.O. (2002). Water issue in Egypt: Resources, pollution and protection endeavors. CEJOEM 8(1): 3–21.
  • [3]. Ali M.H.H., Hussian A.M., Abdel Satar, A.M., Goher, M.E., Napiórkowska-Krzebietke A. et al. (2016). The isotherm and kinetic studies of heavy metals biosorption by nonliving cells of Chlorella vulgaris. J. Elem. 21(4): 1263–1276.
  • [4]. Angelone, M. & Bini, C. (1992). Trace elements concentrations in soils and plants of Western Europe. In D.C. Adriano (Ed.), Biogeochemistry of Trace Metals (pp. 19–60). Lewis Publishers, Boca Raton, FL.
  • [5]. APHA (American Public Health Association) (1992). Standard methods of the examination of water and waste water. 17th edition (pp. 1–1015). AWWA, WPCF.
  • [6]. APHA (American Public Health Association) (2012). Standard Methods for the examination of water and wastewater. 22nd edition (pp. 1–1360). Washington, ISBN 978-087553-013-0.
  • [7]. Bahnasawy, M.H., Khidr, A.A. & Dheina, N.A. (2011). Assessment of heavy metals concentrations in water, plankton and fish of Lake Manzala, Egypt. Turk. J. Zool. 35(2): 271–280.
  • [8]. Baskaran, P.K., Venkatraman, B.R., Hema, M. & Arivoli, S. (2010). Adsorption studies of copper ion by low cost activated carbon. J. Chem. Pharm. Res. 2(5): 642–655.
  • [9]. Carlson, R.E. & Simpson, J. (1996). A Coordinator’s Guide to Volunteer Lake Monitoring Methods (pp. 1–96). North American Lake Management Society.
  • [10]. Champagne, P. (2009). Fixed-bed column study for the removal of cadmium (II) and nickel (II) ions from aqueous solutions using peat and mollusk shells. J. Hazard. Mater. 171(1–3): 872–878.
  • [11]. Chan, S.M., Wang, W. & Ni, I. (2003). The uptake of Cd, Cr, and Zn by the macroalga Enteromorpha crinita and subsequent transfer to the marine herbivorous rabbitfish, Sigunus canaliculatus. Arch. Environ. Contam. Toxicol. 44: 298–306.
  • [12]. Chorus, I. & Bartram, J. (1999). Toxic Cyanobacteria in water: A guide to their public health consequences, monitoring and management. WHO Publ., E & FN Spon, London and New York.
  • [13]. Deskachary, T.V. (1959). Cyanophyta. 1st edition (pp. 1–686). Indian Council of Agricultural Research, New Delhi.
  • [14]. Elmaci, A., Teksoy, A., Olcay Topaç, F., Özengin, N., Kurtoglu, S. et al. (2007). Assessment of heavy metals in Lake Uluabat, Turkey. Afr. J. Biotech. 6: 2236–2244.
  • [15]. El-Shabrawy, G.M., Anufriieva, E.V., Germoush, M.O., Goher, M.E. & Shadrin, N.V. (2015). Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)? Chin. J. Oceanol. Limn. 33(6): 1368–1377.
  • [16]. Engdahl, S., Mamboya, F.A., Mtolera, M., Semesi, A.K. & Björk, M. (1998). The brown macroalgae Padina boergesenii as an indicator of heavy metal contamination in the Zanzibar Channel. Ambio 27 (8): 694–700.
  • [17]. Ettl, H., & Gärtner, J. (1988). Chlorophyta. II Tetrasporales, Chlorococcales, Gloeodendrales. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa Band 10 (pp. 1–436). Gustav Fischer Verlag, Stuttgart, New. York.
  • [18]. Ferletta, M., Bråmer, P., Semesi, A.K. & Björk, M. (1996). Heavy metal contents in macroalgae in the Zanzibar channel – an initial study. In M. Björk, A.K. Semesi, M. Pedersén & B. Bergman (Eds.), Current trends in Marine Botanical Research in the East African Region (pp. 332–346). Proceedings of the Symposium on the Biology of Microalgae, Macroalgae and Seagrasses in the Western Indian Ocean. Stockholm: Sida.
  • [19]. Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92: 407–418.
  • [20]. Goher, M.E., Abd El-Monem, A.M., Abdel Satar, A.M., Ali, M.H.H., Hussian A.M. et al. (2016). Biosorption of some toxic metals from aqueous solution using non-living cells of Chlorella vulgaris. J. Elem. 21(3): 703–714.
  • [21]. Gustav, R (1974). Hazardous heavy metals: cadmium, mercury, lead and arsenic. WHO International Reference Centre for Waste Disposal (pp. 1–11), IRCWD News, Switzerland.
  • [22]. Guiry, M.D. & Guiry, G.M. (2017). AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org; searched on 16 November 2017.
  • [23]. Hannford, L.T. & Britton, M.E. (1952). The algae of Illinois (pp. 1–407). The Univ. of Chicago Press, Chicago, Illinois, U.S.A.
  • [24]. Huber-Pestalozzi, G. (1942). Das Phytoplankton des Süßwassers. 2. Teil, 2. Häfte. In A. Thienemann (Ed.) Die Binnengewasser. Band XVI (pp. 1–549). Schweizerbart’she Verlagsbuchhandlung, Stuttgart.
  • [25]. Hussian, A.M., Napiórkowska-Krzebietke, A., Toufeek, M.E.F., Abd El-Monem, A.M. & Morsi H.H. (2015). Phytoplankton response to changes of physicochemical variables in Lake Nasser, Egypt. J. Elem. 20(4): 855–871.
  • [26]. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 7(2): 60–72.
  • [27]. Kathal, R., Malhotra, P. & Chaudhary, V. (2016). Phytoremediation of Cadmium from Polluted Soil. J. Bioremediat. Biodegrad. 7(6): 376–378.
  • [28]. Kosygin, L., Dhamendra, H. & Gyaneshwari, R. (2007). Pollution status and conservation strategies of Moirang river, Manipur with a note on its aquatic bio-resources. J. Environ. Biol. 28: 669–673.
  • [29]. Krammer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa. Band 2/3 (pp. 1–576). Gustav Fischer Verlag, Stuttgart, Jena.
  • [30]. Lavoie, M., Le Faucheur, S., Fortin, C. & Campbell, P.G.C. (2009). Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Aquat. Toxicol. 92: 65–75.
  • [31]. Machiwa, J.F. (1992). The anthropogenic pollution in the Dar es Salaam Harbour area. Tanz. Mar. Pollut. Bullet. 24: 562–567.
  • [32]. Machiwa, J.F. (2000). Heavy metals and organic pollutants in sediments of Dar es Salaam Harbour prior to dredging in 1999. Tanz. J. Sci. 26: 29–46.
  • [33]. Malik, A. (2004). Metal bioremediation through growing cells. Environ. Int. 30: 261–278.
  • [34]. Mann, S. & Mandal, A. (2014). Removal of fluoride from drinking water using sawdust. Int. J. Eng. Res. Appl. 4(7): 116–123.
  • [35]. Mason, C.F. (2002). Biology of freshwater pollution. 4th edition (pp. 1–387). Essex Univ. England.
  • [36]. Mehta, S.K. & Gaur, J.P. (2005). Use of alga for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25: 113–152.
  • [37]. Napiórkowska-Krzebietke, A., Dunalska, J., Grochowska, J., Łopata, M. & Brzozowska, R. (2015). Intensity and thresholds of cyanobacterial blooms an approach to determine the necessity to restore urban lakes. Carpath. J. Earth Env. 10(2): 123–132.
  • [38]. Nies, D.H. (1999). Microbial heavy metal resistance. Appl. Micreobial. Biotechnol. 51: 730–750.
  • [39]. Perales-Vela, H.V., Peña-Castro, J.M. & Cañizares-Villanueva, R.O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64: 1–10.
  • [40]. Perez-Rama, M., Alonso, J.A., Lopez, C.H. & Vaamonde, E.T. (2002). Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour. Technol. 84: 265–270.
  • [41]. Phillips, D.J.H. & Rainbow, P.S. (1994). Biomonitoring of Trace Aquatic Contaminants. 2nd edition (pp. 1–371). London: Chapman and Hall.
  • [42]. Popovsky, J. & Pfiester, L.A. (1990). Dinophyceae (Dinoflagellitida). In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßiwasserflora von Mitteleuropa. Band 6 (pp. 1–272). Gustav Fischer Verlag, Jena, Stuttgart.
  • [43]. Prescott, A.G.W (1978). How to know the freshwater algae. The 3rd edition (pp. 1–293). WCB / McGraw, Hill.
  • [44]. Ravera, O. (2001). Monitoring of the aquatic environment by species accumulator of pollutants: a review. J. Limnol. 60: 63–78.
  • [45]. Sathware, N.G., Paterl, K.G., Vyas, J.B., Patel, S., Trivedi, M.R. et al. (2007). Chromium exposure study in chemical based industry. J. Environ. Biol. 28: 405–408.
  • [46]. Shadrin, N.V., El-Shabrawy, G.M., Anufriieva, E.V., Goher, M.E. & Ragab, E. (2016). Long-term changes of physicochemical parameters and benthos in Lake Qarun (Egypt): Can we make a correct forecast of ecosystem future? Knowl. Manag. Aquat. Ecosyst. 417: 18.
  • [47]. Shanab, S., Essa, A. & Shalaby, E. (2012). Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signal. Behav. 7(3): 392–399.
  • [48]. Soleiman, A.A., Morsy, A.M. & Kamel, G.A. (1994). Drainage water in the Nile Delta. Report 38. Drainage Research Institute Kanater, Cairo, Egypt.
  • [49]. Stahl, R., Ramadan, A.B. & Pimpl, M. (2009). Bahr El-Baqar Drain System /Egypt Environmental Studies on Water Quality. Part I: Bilbeis Drain / Bahr El-Baqar Drain. Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Wissenschaftliche Berichte FZKA 7505, Germany.
  • [50]. Starmach, K. (1974). Flora Słodkowodna Polski. Tom 4. Cryptophyceae, Dinophyceae, Raphidophyceae (pp. 1–519). Kraków.
  • [51]. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., & Sutton, D.J. (2012). Heavy Metals Toxicity and the Environment. EXS 101: 133–164.
  • [52]. Tikkanen, T. (1986). Kasviplanktonopas (pp. 1–278). Helsinki. Topperwien, S., Xue, H., Behra, R. & Sigg, L. (2007). Cadmium accumulation in Scenedesmus vacuolatus under freshwater conditions. Environ. Sci. Technol. 41: 5383–5388.
  • [53]. WHO (2003a). Iron in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/03.04/8).
  • [54]. WHO (2003b). Lead in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/03.04/9).
  • [55]. WHO (2003c). Zinc in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/ WSH/03.04/17).
  • [56]. Wood, J.M. (1974). Biological cycles for toxic elements in the environment. Science 183: 1049–1052.
  • [57]. Zahran, M.A., El-Amier, Y.A., Elnaggar, A.A., Abd El-Azim, H. & El-Alfy, M.A. (2015). Assessment and Distribution of Heavy Metals Pollutants in Manzala Lake, Egypt. J. Geosci. Environ. Protect. 3: 107–122.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c254f5a-7c40-4939-a82e-66a4058c2891
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.