PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

IR detection module with integrated real-time FIR filter implemented in FPGA

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Infrared detectors are usually characterized by 1/f noise when operating with biasing. This type of noise significantly reduces detection capabilities for low-level and slow signals. There are a few methods to reduce the influence of 1/f noise, like filtering or chopper stabilization with lock-in. Using the first one, a simple 1st-order analog low-pass filter built-in amplifier usually cuts off 1/f noise fluctuations at low frequencies. In comparison, the stabilization technique modulates the signal transposing to a higher frequency with no 1/f noise and then demodulates it back (lock-in amplifiers). However, the flexible tuned device, which can work precisely at low frequencies, is especially desirable in some applications, e.g., optical spectroscopy or interferometry. The paper describes a proof-of-concept of an IR detection module with an adjustable digital filter taking advantage of finite impulse response type. It is based on the high-resolution analog-to-digital converter, field-programmable gate array, and digital-to-analog converter. A microcontroller with an implemented user interface ensures control of such a prepared filtering path. The module is a separate component with the possibility of customization and can be used in experiments or applications in which the reduction of noises and unexpected interferences is needed.
Słowa kluczowe
EN
IR detectors   FIR   FPGA   DSP   noise   filtering  
Twórcy
  • Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
Bibliografia
  • [1] Rogalski A (2005) HgCdTe infrared detector material: history, status and outlook. Reports Prog Phys 68:2267-2336. doi:10.1088/0034-4885/68/10/R01
  • [2] Ahirwar S, Swarnkar R, Bhukya S, Namwade G (2019) Application of Drone in Agriculture. Int J Curr Microbiol Appl Sci 8:2500-2505. doi:10.20546/ijcmas.2019.801.264
  • [3] Corsi C (2012) Infrared: A Key Technology for Security Systems. Adv Opt Technol 2012:1-15. doi:10.1155/2012/838752
  • [4] Wojtas J, Mikolajczyk J, Nowakowski M, Rutecka B, Medrzycki R, Bielecki Z (2011) Applying CEAS Method to UV, VIS, and IR Spectroscopy Sensors. Bull. Polish Acad. Sci. Tech. Sci. 59: 415-418. doi:10.2478/v10175-011-0050-x
  • [5] Rogalski A, Bielecki Z (2022) Detection of Optical Signals. CRC Press, New York.
  • [6] Kloos G (2018) Applications of Lock-in Amplifiers in Optics. SPIE Press.
  • [7] Zhang Q, Chang J, Wang Z, et al (2018) SNR Improvement of QEPAS System by Preamplifier Circuit Optimization and Frequency Locked Technique. Photonic Sensors 8:127-133. doi:10.1007/s13320-018-0468-y
  • [8] Lv G, Chang J, Wang Q, et al (2014) Research progress of optical H2O sensor with a DFB diode laser. Photonic Sensors 4:113-119. doi:10.1007/s13320-014-0151-x
  • [9] Kishore K, Akbar SA (2020) Evolution of Lock-In Amplifier as Portable Sensor Interface Platform: A Review. IEEE Sens J 20:10345-10354. doi:10.1109/JSEN.2020.2993309
  • [10] Winder S (2002) Analog and digital filter design. Elsevier.
  • [11] Patel JJ, Parmar KR, Mewada HN (2016) Design of FIR filter for burst mode demodulator of satellite Receiver. In: 2016 International Conference on Communication and Signal Processing (ICCSP). IEEE, pp 0686-0690 doi:10.1109/ICCSP.2016.7754230
  • [12] Cheng Xu, Su Yin, Yunchuan Qin, Hanzheng Zou (2013) A novel hardware efficient FIR filter for wireless sensor networks. In: 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, pp 197-201 doi:10.1109/ICUFN.2013.6614811
  • [13] Ojail M, Chevobbe S, David R, Demigny D (2008) A Frequency Domain FIR Filter Implementation Method for 3G Communication Systems. In: 2008 The Third International Conference on Digital Telecommunications (icdt 2008). IEEE, pp 1–5 doi:10.1109/ICDT.2008.9
  • [14] Lavanya M, Kalaiselvi A (2016) High-speed FIR adaptive filter for RADAR applications. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, pp 2118-2122. doi:10.1109/WiSPNET.2016.7566516
  • [15] Erdogan AT, Arslan T High throughput FIR filter design for low power SoC applications. In: Proceedings of 13th Annual IEEE International ASIC/SOC Conference (Cat. No.00TH8541). IEEE, pp 374-378. doi:10.1109/ASIC.2000.880767
  • [16] Fridman A, Semenov S (2013) System-on-Chip FPGA-based GNSS receiver. In: East-West Design & Test Symposium (EWDTS 2013). IEEE, pp 1-7. doi:10.1109/EWDTS.2013.6673192
  • [17] Xiaoyan Jiang, Yujun Bao (2010) FIR filter design based on FPGA. In: 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, pp V13-621-V13-624. doi:10.1109/ICCASM.2010.5622482
  • [18] Pandey B, Das B, Kaur A, et al (2017) Performance Evaluation of FIR Filter After Implementation on Different FPGA and SOC and Its Utilization in Communication and Network. Wirel Pers Commun 95:375-389. doi:10.1007/s11277-016-3898-0
  • [19] Park SY, Meher PK (2014) Efficient FPGA and ASIC Realizations of a DA-Based Reconfigurable FIR Digital Filter. IEEE Trans Circuits Syst II Express Briefs 61:511–515. doi:10.1109/TCSII.2014.2324418
  • [20] Gawron, W., et al. "Recent progress in LWIR HOT photoconductors based on MOCVD grown (100) HgCdTe." Semiconductor Science and Technology 31.10 (2016): 105004. doi: 10.1088/0268-1242/31/10/105004
  • [21] Grudzien M, Piotrowski J (1989) Monolithic optically immersed HgCdTe IR detectors. Infrared Phys 29:251–253. doi:10.1016/0020-0891(89)90058-4
  • [22] Lei W, Antoszewski J, Faraone L (2015) Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl Phys Rev 2:041303. doi:10.1063/1.4936577
  • [23] Piotrowski J (1993) Optical immersion of IR photodetectors as an effective way to reduce cooling requirements Optica Applicata 23.1: 85-90.
  • [24] Slavek J, Randal H (1975) Optical immersion of HgCdTe photoconductive detectors. Infrared Phys. 15 339 - 340.
  • [25] AD7606 datasheet. In: Analog Devices. https://www.analog.com/media/en/technical-documentation/data-sheets/ad7606_7606-6_7606-4.pdf. Accessed 31 May 2023
  • [26] 7-Series DSP48E1 Slice - User Guide. In: Xilinx. https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1. Accessed 31 May 2023
  • [27] Sudharsan RR (2019) Synthesis of FIR Filter using ADC-DAC: A FPGA Implementation. In: 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES). IEEE, pp 1-3.
  • [28] Meher PK, Chandrasekaran S, Amira A (2008) FPGA Realization of FIR Filters by Efficient and Flexible Systolization Using Distributed Arithmetic. IEEE Trans Signal Process 56:3009-3017. doi:10.1109/TSP.2007.914926
  • [29] Chakraborty S (2013) Advantages of Blackman window over hamming window method for designing FIR filter. Int J Comput Sci & Eng Technology (IJCSET), Vol. 4 No. 08 Aug 2013.
  • [30] Sundararajan D (2001) The discrete Fourier transform: theory, algorithms and applications. World Scientific.
  • [31] DAC8541 - datasheet. In: Texas Instruments. https://www.ti.com/lit/ds/symlink/dac8541.pdf. Accessed 31 May 2023.
  • [32] Rapuano S, Balestrieri E, Daponte P, De Vito L (2012) Experimental investigation on DAC glitch measurement. In: XX IMEKO World Congress, Metrology for Green Growth, September. pp 9-14.
  • [33] Create an FIR Filter Using Integer Coefficients. In: MathWorks® Help Cent. https://www.mathworks.com/help/dsp/ug/create-an-fir-filter-using-integer-coefficients.html. Accessed 31 May 2023
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
2. This work was supported by Military University of Technology grant no. UGB 22-871.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c23734f-e784-4ec6-bcfe-d9dfd61e1202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.