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PRODUCTION OPTIMIZATION BY COGNITIVE TECHNOLOGIES

Today, value chains are considered fractionally andhe basis of simplified model assumptions.ratgons
between processes, materials, means of produatibidividuals acting in this environment as wellthe effect
of changes on the product usually are not knowraestively. In order to take corrective actions toigathese
deficits, self-optimizing production system teclogies can be used. They provide systems that esnthat
“human” ability of reaching a decision with techali@rchitectures. The goal of these approaches sseadily
analyze and evaluate the actual status in techizalogs well as in organisational areas and conduststem
adaptation to alternating objectives. Central qaestg in this field of research is how to survegguction data
in order to detect correlations of production pagters and their influence on product parametens,tbaderive
decisions from this knowledge and how to learn frra consequences. Application technologies capable
of taking on these tasks of self-optimization touéate intelligent behaviour are analysed. The a@inoiidentify
the competencies of these technologies, in ordéutidl a cognitive system architecture based oricatons
especially suited for each task that has to bdlédfto emulate cognitive human decision makingagsses.

1. NEED AND POTENTIAL

During the last years, general conditions for tlmedpcing industry in high-wage
countries have changed significantly. Due to ameased world wide competition, high
quality products are requested as well as costieffi production techniques. Many
companies are not up to these challenges in Germuadiyelocate their production in low
cost counties. There low wages and taxes as waktas effects of cheap mass production
pretend a higher productivity. [1]

Another global trend shows that customers ask namr@ more for individualized
products, which have to be available within a vehort time. One example is the
automotive industry, where customers are allowedht@nge the configuration of their car
until a short time before delivery. As a resuligessful companies have to be able to react
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to individual customer demands quickly. Thus shbrbughput times, high flexibility in
production planning and stable processes are manyd§]

Especially production processes of high end pradaein complex dependencies of a
high number of production parameters and theiuarite on the final product, so that these
relations are not understood fully. This tends ésuit in decreasing process stability.
Production processes have to be optimized congtdatlachieve the desired product
characteristics and tolerances. However, thesetreams do not allow near-term product
variations as well as the processes are rarelguaedioptimally, because they are often only
optimized in sections. This leads to a discretenupation of single elements in a system,
without estimating their interaction concerning taracteristics of the final product.

More effective than the optimization of single pees steps is the function oriented
optimization of the product. This leads to the dues how single objectives within
a production process, like the dimensions to cometa) can be adapted dynamically.
Thereby the superior objective is the function ks product, which can be achieved more
efficient. If this process variation is done autormwsly by the productions system, this is
called self-optimization.

On the one hand, such a dynamisation of cruciatge® parameters will reduce costs,
because single tolerances can be expanded withassingn the required product
characteristics. On the other hand, the flexibitifythe production process in reference to
changes of the product will increase significantly.

2. THE SELF-OPTIMIZING FACTORY

A self-optimizing factory is able to conduct indegently changes and fundamentally
optimize the production processes concerning guatibsts and throughput time. These
independent variations of internal processes alledcaelf optimization. It is defined as
a repeating execution of the following actions:

= Continuous analysis of the as-is situation
= |dentification of the objectives

= Adaptation of the system behaviour in order to nghe objectives [12]

Contradictory to a classical controlling circuitsea on internal decisions, a self-
optimizing system is able to redefine the varioub-sbjectives steadily and adapt the
controlling process dynamically (Figure 1). Alsodantradiction to a classical controlling
circuit, not a single process control loop is famlisbut cascading controlling circuits
focusing all domains of the company that are career This means, that the whole process
chain is integrated into the controlling circuit arhigher level, and that information is also
made available to the controlling levels above.sItie levels of process, process chain and
production control loops are also integrated ifte tontrolling circuits. On the top level
there is the controlling circuit for entrepreneugality. [10] On this level the superior
objectives are defined and the controlling mechasisvaluate if they are obtained. This is
done by generating sub-objectives and delegatiaghtto the controlling circuits of these
levels concerned.
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Fig. 1. Cascading controlling circuits.

As a result of the similarity to cognitive processself-optimization is intimately
connected with the cognition science. Its researelas are cognitive systems. They consist
of knowledge, a central processing unit and theosunding situation. Cognitive systems are
able to gather information from their environmenotprocess it in their controlling unit and
to convert it into actions which have influencetba environment. [14]

Such a cognitive system is able to form the cora e€lf-optimizing factory. [15,16]
Implementation of cognitive mechanisms on compaystems allows the exact processing
of huge amounts of data and so even the analyst®mplex production processes with
complex multi-layer dependencies.

In the manufacturing, a cognitive, self-optimizirsystem is able to modify the
production process by selectively changing dimersiand tolerances, in order to react to
deviations of upstream process steps. The pro@sbe stabilized and the quality of the
final product can be increased. In assembly, aitggrsystem can act in a similar way. By
paring of individual parts and modifying actuativaiables, dimension variations resulting
from manufacturing can be compensated. [8]

During the inspection, all accumulated measurentaté is collected. On the one
hand, it can be directly sent to upstream procésgssson the other hand, the cognitive
system is able to detect correlations between mtamiu and product parameters
of individual parts.

Furthermore the cross process orientation of tlymitive system allows steering and
optimizing the material and information flow. Thedividual processes are coordinated, thus
stocks between process steps can be reduced dmelwbole efficiency will be enhanced.

The central elements for the integration of cogritmechanisms in a production
process are a steady information flow through thieoler process and an enduring
optimization in the context of the continuous imment process. [11]

The integration of a cognitive system into the vehpkocess chain is described in
figure 2. The cognitive system is a central elemeitiin the process chain. From every
process step, information is gathered and procesSetutions are elaborated and
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modifications are executed. Thereby the functiapaif a part is the main objective of the
modifications and optimizations.

Main focus: Interaction within production processes

p Functional
Information and adjustments
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- ' Production rasults
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Fig. 2. The self-optimizing factory.

3. COGNITIVE SYSTEMS

Based on the academic definition, cognition cammeerstood as a collective term for
all processes and structures that are conneciaerteption and identification, like thinking,
memory, imagination, learning, etc.

Since the 1970¢he cognitive science has developed to an intaplisary field
of research. Its main aspects are the cognitivegases and structures of humans as well as
other organisms and even technical systems (aatifiatelligence). Thereby computer
models and psychology are connected [6].

3.1. STEP MODEL OF INFORMATION PROCESSING

In all processes that are executed by human be@mgseir environment, stimuli are
gathered, processed and afterwards an action @ide This scheme can be divided into
three steps of information processing.

First there is input information, which is descdb@ perception and interpretation.
Afterwards, there is the phase of information pssgey. The discovered information is
processed and a decision to act is derived. Fimaltymation is emitted. The information
output is described by several actions that des@iboncrete reaction to a stimulus [5].

Information input (Perception and interpretation)he first step of the human information
processing is gathering input information. A phgsistimulus is discovered or a necessary
piece of information is perceived through the vasicsense organs. This stimulus needs
a certain threshold to be perceived and categoazediportant. The interpretation follows
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the detection of a stimulus. The stimulus is idéeedi and compared to existing cognitive
schemes [5].
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Fig. 3. Cognitive information processing

Information input (Perception and interpretation)he first step of the human information
processing is gathering input information. A phgsistimulus is discovered or a necessary
piece of information is perceived through the vasisense organs. This stimulus needs
a certain threshold to be perceived and categoazadiportant. The interpretation follows
the detection of a stimulus. The stimulus is iderdi and compared to existing cognitive
schemes [5].

Information processing (DecisionBetween the information input and the human reacti
there are a lot of mental processes. The stimultusea at a receptor and has to be
transformed into a cognitive representation anerafirds into a reaction. During the
information processing, the information is forwadde sense of a task fulfilment. The
decision is a very important aspect. The decissoa conflict solving process, which has to
choose between several possible options.

Information output (Action)The information output process depends on thel@nobthe
outer conditions and the constitution of the hurbaimg. In order to exert influence on the
environment, there has to be an information outlputhe context of the human cognition,
information output mostly takes places with the sment of body parts or the acoustical
output of speech. Both are controlled from the orotentres in the central nervous system,
which are located in several brain regions andspueal cord. [5]

3.2. COGNITIVE TECHNOLOGIES

On basis of the modelling of cognitive processkerd are several technical systems
that emulate cognition with computer architectul®#h SOAR, the most important one is
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introduced. Furthermore, artificial neural networliee discussed. An artificial neural
network itself does not consist of a cognitive #&eatture, but has the ability of autonomous
perception and learning and therefore can be atilas part of a cognitive system acting as
a self-optimizing controlling application for proction systems.

Both technologies do not represent a complete tiwgrsystem capable of carrying out
every single process that is necessary for an imghéation of self-optimizing controlling
systems. But both of them have their own speciditiab emulating the different cognitive
process steps and can be combined to build a cagibntrolling system considering their
special abilities. So in the following their ab#i$ are discussed.

SOAR

SOAR (State Operator Apply Results) is a cognitivehitecture based on the early systems
GPS and OPS5. Intelligence is understood as thealphchievement of objectives.

In SOAR target oriented problem solving takes plasea heuristic search in problem
spaces. The search is a successive applicatiorp@faimrs until the target situation is
reached. In addition to classical planning systeths, search in the problem space is
implemented in a complex decision cycle. For knalgke representation, SOAR offers two
concepts in terms of a short-term memory and a-teng memory.

The long-term memory stores operative knowledgeht construction of problem
spaces and control knowledge in order to steesd¢hech processes.

Long-term memory
rocedural Semantic Episodic

=== ) || =

Short-term memory

S
-

‘Perception H Action ‘

I

Fig. 4. The SOAR memory model

Decision
finding

The SOAR memory model (Fig. 5) does an exact namirige declarative memory. It
is divided into the semantic and the episodic meuideclarative knowledge is organised in
so called semantic networks. The short-term merfmrys the working memory. Here, all
information is processed.

The uniform representation and access mechanisththarpossibility to structure the
working memory in several areas result in a stremgilarity to blackboards. The open
arrangement of the working memory allows the adaihgny modules which can use this
memory or an assigned segment for information exgband coordination.
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The information processing is conducted in two pkadn the first phase, the
knowledge search phase, productions of the long-teemory, which work on the working
memory, fire. This process leads to the generationew objects, which in turn activates
other productions. In addition preferences, whighwsed in the second phase with targets,
problem spaces, conditions and operators, are gjeer

In the second phase, the decision procedure seratperator by means of the actual
knowledge in the short-term memory and by the dielxasting preferences and applies it to
the associated problem space. By successive atpticaf operators, either a target or
a dead end will be reached. In this case, a sugettas generated in order to lead the
searching process out of the dead end. If the deddtannot be solved in this way, problem
space independent mechanisms like backtrackingised. In order to avoid dead ends, a
chunking learning mechanism is used. It is actiyaeery time, when a successful way out
of a dead end has been found. It generates a produale, which consists of the entrance
and the way out of the dead end. If an agent fiteidf in the same situation later, the
learned rule fires and the way into the dead erddsded.

Application areas of SOAR
SOAR is already used very successfully to simufatean behaviour. Typical applications
are robot controlling and the steering of artificememies in flight simulators for pilot
training. Hereby very good results are reachedthabd computer controlled aircrafts can
make their own decisions and also communicate ahohdeams. There are first approaches
to use SOAR in special applications in the produrctechnology [13].

Artificial Neural Networks

While SOAR acts on a symbolic level, i. e. it isbd on a pre-defined concept world,
artificial neural networks describe a cognitive haiecture with sub symbolic information
processing [4].

Artificial neurons are a technical approach of &steact modelling to emulate the
processes of a biological nerve cell. Like a biaabnerve cell, artificial neurons possess
input channels to detect signals in the form ofuinpalues and one output function to
provide output values [2].

One integral characteristic of an artificial neuratwork is the ability in parallel
information processing: every network entity worik&lependently from the remaining
network, thus it is not obliged to act in stricjgential actions. This would be the case in
a standard architecture consisting of processamangand a program [14],[4].

An artificial neural network can be trained withpbasticated non-linear functions for
information processing. Like in biological neuraétworks, the trained knowledge in
artificial neural networks is represented in theghiestructure of the artificial neurons. This
learning differs from supervised to unsupervisedreng. In case of supervised learning, the
network is trained with a set of known input andresponding output samples. With a set-
actual comparison, the margin of error within tleéwork can be identified [4].

However, in case of unsupervised learning the neétwitself has to generate
classifications for the corresponding input signalsis is the only possible solution if there
is no known output signal for the correspondinguingignals [3].
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Being not fully apprehensive is one of the maiti@ams of artificial neural networks:
Acting like a black box, one output signal is gated from the input signals without
revealing anything about the inherent transfer tionc This results from the complex design
of neural networks accompanied with the high lesiehon linearity. Indeed a couple of
algorithms provide the ability to generate rulegareling the behaviour of these networks,
but this additional research is not fully relialblled can cause a huge amount of extra costs
within a project [2].

4. COGNITIVE TOLERANCE MATCHING

Within the scope of the cluster of the researchjeggto’Integrative Production
Technology for High-Wage Countries’ of RWTH AachEmiversity the competitiveness
of the production technology of high-wage countige® be increased enduringly. One main
aspect to ensure competitiveness is self-optimipirggluction systems. The proposition to
be proofed is that a cognitive controlled self-opzing production system is able to act
faster and more resource-efficient than a planmedyztion system.

Self-optimizing production systems realize valueeatn oriented approaches with
simultaneously increasing planning efficiency ansferring already acquired knowledge to
similar scenarios in the production technologythis way, new approaches for production
and assembly systems are made possible. They Igteadilyze and evaluate the as-is
situation and reach a dynamical system adjustnegyatrding varying objectives.

At the moment, value stream chains are not examawe the whole process, but
rather in sections. Thus a holistic modelling igpassible. So interdependencies between
processes, materials, means of production andithdils acting in this environment, as well
as the effect of changes on the product, are ysoatlknown exhaustively. The correlation
between variations of the production parametersthaconsequences for the final product
are only identified inadequately.

Within the project, comprehensive approaches infiigfld of coordination, planning,
controlling and man-machine interaction are dewvedbprhis frame of action allows self-
optimization of production systems in differenteditions. This shall be reached by creation
and implementation of cognitive mechanisms whicit ao the planning and the
organisational level over the whole process chéjn [

Use Case

On this approach, the RWTH Aachen University, th@uRhofer IPT and the BMW Group
defined a project to optimize the production precekthe rear-axle drive in respect of its
emitted acoustics. This process runs from the geamanufacturing to the assembly and
owns various very sensitive tolerances with muatiel dependencies. Within the scope
of this project, Cognitive Tolerance Matching (CTM)applied.

With Cognitive Tolerance Matching, a cognitive gystfor the holistic optimization
of tolerance chains in a production process is logeel. The objective of this system is the
optimization of tolerances over the whole produttiorocess [5]. This stands for the
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widening of unnecessary narrow tolerances in olaave costs, as well as the more exact
definition of critical tolerances in order to ensuine functionality of the final product.

The challenge lies in understanding the processpiwluct the right optimizations at
the right place. To achieve this understandingjnguthe production process ‘Cognitive
Tolerance Matching’ stores and afterwards apprasdleprocess and product parameters,
which can influence the desired product charadteri§he first step of data processing
analyses the correlations between the recordedashatahe desired product characteristics.
Therefore statistical data mining algorithms aslasglfor example artificial neural networks
can be used. The analysis of this data, which le@s vecorded over a huge number of
manufactured products, allows implication of naltweaiation within the tolerances and also
manual process variations.

The chosen rear-axle drive has a distinct influetacéhe acoustic inside the interior
of the car and possesses very complex mechanisgetauofure-borne sound generation. The
structure-borne sound is emitted by the car botty tine interior and can be disturbing for
the customer. The acoustical profile can be spdiji adjusted with the gear set. Because
of partial contradictory objectives like low noigagh efficiency and high durability, this
adjustment is very challenging. The car acoustid, $0 also the rear-axle drive acoustic are
very important product characteristics for custasmer

Besides the objective to produce cars with a lowentactor, it is even more important
to identify the acoustical relevant parametersasigh and production to ensure, that all cars
are produced with a constant acoustic without spr@aspecial challenge besides the pure
identification of the acoustical relevant parametisrtheir effective modification. Thereby
multi layer acoustical dependencies between thglesiparts of the car have to be taken into
account.

Axle drives and changeable speed gearboxes likeuahamansmission, automatic
transmission and double clutch gearboxes causeatiobs by periodic meshing. These
vibrations can be amplified by tolerances in thenafacturing process chain and can be
quite distracting for the customer. At axle drivékge hypoid gear set is the key element for
structure-born sound generation.

Pre- Cear Case Lappmg Differential
machining focnerating f hardening assembly

Fig. 5. Production process of a hypoid gear set

The challenge in controlling the acoustic of a f&@de drive lies in assigning the
occurring acoustical characteristics to the caugagameters (tolerances) and finally in
taking the most efficient measures for error préeen
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A Cognitive Architecture

The purpose of Cognitive Tolerance Matching is talgse the whole production
process from the gear set manufacturing to thd #ssembly of the housing regarding the
resulting acoustic and to initiate adequate optitnins. One example letting the assembly
react to a derivation during the gear set manufaxgjuin order to produce an acoustic
optimal gear box.

With respect to the tasks mentioned one main angdleis to identify the abilities
of the technologies researched to build a selfraiptng controlling system by arranging
them considering their abilities of fulfilling thieasks of cognitive information processing,
and to adapt the results to production systens, io the requirements of the production
systems subject to their general conditions.

In the following, a combination of an artificial &l networks and SOAR is
introduced as proposed solution to a cognitiveesysto control the production described
above:

The power of SOAR is the ability to generate decisi from existing rules and
validate or extend them during their applicatiorheflewith SOAR is able to conduct
a variation of manufacturing parameters, to leemmfthe effect of the particular application
and to transform this knowledge into new rules.

So in the architecture proposed SOAR is the m&ment. It varies parameters
representing the production, while neural netw@kaluate these new generated parameter-
sets subsequently. Artificial neural networks apprapriate to emulate the considered
production, subject to them being trained suffidienA training of the neural networks is
essential to emulate the action of the objectdhefreal production, since neural networks
extract their knowledge from the application ofgaeters in a real system and the results
obtained. That implies that a neural network iabl emulate a production, provided that
there is a sufficient quantity of parameter-seteaay applied representing the knowledge.
However, in the application proposed neural netwa@ite not going to make decisions, but
evaluate the decision made by SOAR. That meanvdtuae the vectors of production
parameters and to send the results obtained baSO&R, so that it will be possible for
SOAR to learn from the results.

The detailed interaction of the combined systemarganized in the following way:
Starting with a given vector of parameters and aisbaet of rules SOAR conducts
a variation of these parameters and sends it to¢hieal network. The neural network, that
is assumed to be pre-trained, evaluates the pasaiseis and sends back the results
obtained, i. e. the product characteristics assutodoe produced in the real production
system. The results are calculated under usagéneofnetwork’s knowledge about the
production processes.

This procedure of varying parameters and evaluathng parameter-sets will be
repeated until the results obtained by the neuedvork allow the conclusion, that all
demands towards the product would be fulfilledha teal production. Then the parameter-
set used by the neural network will also be useprtaluce real products. If these products
made in reality fulfil all demands requested, SO®Reives a success message. The neural
network’s forecasting of the results to be obtainader usage of the parameters given are
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sufficient and so the estimation can be made, thenetwork was able to simulate multi-

level dependencies. In the negative case, if catledlresults and real results do not match,
this will also be fed back to have the possibitdylearn from miscalculation and to correct

the rules used. If derivations from objectives @cche following sequence of actions is

suggested: After derivations are found, the netwgets trained again to update the

knowledge used to emulate the dependencies of mh@ugtion processes. This enables
SOAR to adapt to the new situation and to useeig knowledge for future decisions.

Thereby decisions are made by a systematic decmigking process performed by
SOAR. In doing so, improvements can be achievetksyaically and faster than by using
algorithms that do not consider results alreadyes&iul.

Although a specific controlling application for aat production is developed,
application of the strategy introduced to otherdoictions will also be possible, both within
one single process chain and across several prolcass on different organisational levels.

In the approach presented a type of production tliles one introduced is focused.
Experiments showed that neural nets are able tecdeind to deploy the dependencies
of single processes as well as simplified procdssns. Experiments also showed that
SOAR is able to make decision based on existingsruChallenges of recent research are to
combine those technologies subject to build a tiea- capable controlling system acting
like described in this paper.

Gear set Axle transmission
production assembly

Threshold

Oscillation stimulation in [dB] Oscillation stimulation in [dB] Assessment of vehicle

Pre- Case Lapping Axlg trans-
machining hardening mission
assembly

Optimization of the manufacturing and assembly
tolerances with Cognitive Tolerance Matching

Fig. 6. Implementation of CTM in a production prese

Figure 6 shows the idea of ‘Cognitive Tolerance dWatg’ in the whole production
process. Information from manufacturing, assenaly usage is sent back to the design, to
change the important product parameters. Furthem@ognitive Tolerance Matching
connects the dedicated production steps and en#ides to react to process derivations
immediately. So, CTM contributes to the continusuprovement process in the production
and supports reaching the superior product objestigven with derivations in one or more
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production steps. Not the tolerance orientated ywthdn, but the functional orientated
production forms the main goal of Cognitive ToleraiMatching. In this way, the perceived
quality can be stabilized and even increased.

5. SUMMARY

The producing industry in high wage countries isrenand more under pressure by
virtue of global competitors. To keep the econothycanportant production in these
countries, an exact understanding of the processeandatory.

The self-optimizing factory supports the productitechnology in facing these
requirements. It allows the fast and stable adpoteb conditions changed, supports the
man-machine cooperation and allows the cost efficiproduction in a turbulent
environment. Therefore it uses production systemm@se components dispose of their own
perception, knowledge, planning and learning ahilit

The approach presented in this paper deals witbgaitive controlling system for
production systems, whose intelligent combinatib®S©@AR and neural networks enables it
to adapt to changing conditions fast and efficient.

Besides this approach, there are actually othemisiog research and development
projects regarding the effective and efficient aggilon of cognitive systems in production
technology. By now, the cognitive science ownsrayltradition and cognitive architectures
achieved great results in other fields of applaradi for example robot controlling. In the
production technology, theses systems are standimgrtly before their industrial
application.
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