PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Efficiency comparison between the LLCL and LCL-filters based single-phase grid-tied inverters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An LLCL-filter is becoming more attractive than an LCL-filter as the interface between the grid-tied inverter and the grid due to possibility of reducing the copper and the magnetic materials. The efficiency of the LLCL-filter based single-phase grid-tied inverter also excites interests for many applications. The operation of the switches of the VSI is various with different modulation methods, which lead to different efficiencies for such a single-phase grid-tied inverter system, and therefore important research has been carried out on the effect of the choice of PWM schemes. Then power losses and efficiencies of the LLCL-filter and the LCL-filter based single-phase grid-tied inverters are analyzed and compared under the discontinuous unipolar, the dual-buck and the bipolar modulations. Results show that the efficiency of LLCL-filter based inverter system is higher than the LCL- filter based independent on the modulation method adopted. Experiments on a 2 kW prototype are in good agreement with results of the theoretical analysis.
Rocznik
Strony
63--79
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., wz.
Twórcy
autor
  • Department of Electrical and Electronic Engineering, Shanghai Maritime University, Shanghai, China
autor
  • Department of Electrical and Electronic Engineering, Shanghai Maritime University, Shanghai, China
  • Department of Energy Technology, Aalborg University, Aalborg, Demark
autor
  • Department of Energy Technology, Aalborg University, Aalborg, Demark
Bibliografia
  • [1] Blaabjerg F., Ma K., Liserre M., Power Electronics Converters for Wind Turbine. IEEE Trans. Ind. Appl. 48(2): 708-719 (2012).
  • [2] IEEE1547.2-2008, IEEE Application Guide for IEEE Std. 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems (2008).
  • [3] IEEE 519-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems (1992).
  • [4] Wu W., He Y., Blaabjerg F., An LLCL Power Filter for Single-Phase Grid-Tied Inverter. IEEE Trans. Power Electron. 27(2): 782-789 (2012).
  • [5] Wu W., He Y., Tang T., Blaabjerg F., A New Design Method for the Passive Damped LCL- and LLCL-Filter Based Single-Phase Grid-tied Inverter. IEEE Trans. Ind. Electron. 60(10): 4339-4350 (2013).
  • [6] Wu W., Sun Y., Huang M. et al., A Robust Passive Damping Method for LLCL Filter Based Grid- Tied Inverters to Minimize the Effect of Grid Harmonic Voltages. IEEE Trans. Power Electron. (2013) (in press).
  • [7] Wu W., Sun Y., Lin Z., et al., A Modified LLCL-filter with the Reduced Conducted EMI Noise. IEEE Trans. Power Electron. (2013) (in press).
  • [8] Wu T.F., Chang C.H., Lin L.C., Kuo C.L., Power Loss Comparison of Single- and Two-Stage Grid- Connected Photovoltaic Systems. IEEE Trans. Energy Conversion 26(2): 707-715 (2011).
  • [9] Pires V.F., Martins J.F., Chen H., A modular multilevel power converter system for photovoltaic applications. Proc. POWERENG, Malaga, Spain, pp. 1-5 (2011).
  • [10] Ji B., Wang J., Zhao J., High-Efficiency Single-Phase Transformer less PV H6 Inverter With Hybrid Modulation Method. IEEE Trans. Ind. Electron. 60(5): 2104-2115 (2013).
  • [11] Wu Y., Shafi M.A., Knight A.M., McMahon R.A., Comparison of the Effects of Continuous and Discontinuous PWM Schemes on Power Losses of Voltage-Sourced Inverters for Induction Motor Drives. IEEE Trans. Power Electron. 26(1): 182-191(2011).
  • [12] Yao Z., Xiao L., Control of Single-Phase Grid-Connected Inverters with Nonlinear Loads. IEEE Trans. Ind. Electron. 60(4): 1384-1389 (2013).
  • [13] Zhang X., Gong C., Dual-Buck Half-Bridge Voltage Balancer. IEEE Trans. Ind. Electron., 60(8): 3157-3164 (2013).
  • [14] Holmes D.G., Lipo T.A., Pulse Width Modulation for Power Converters: Principles and Practice. Hoboken, NJ: Wiley-IEEE Press (2003).
  • [15] Liserre M., Blaabjerg F., Hansen S., Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl. 41(5): 1281-1291 (2005).
  • [16] Vazquez A., Rodriguez A., Fernandez M., et al., On the Use of Front-End Cascode Rectifiers Based on Normally-on SiC JFET and Si MOSFET. IEEE Trans. Power Electron. (2014) (in press).
  • [17] Ebrahimi J., Babaei J., Gharehpetian G.B., A New Multilevel Converter Topology with Reduced Number of Power Electronic Components. IEEE Trans. Ind. Electron. 59(2): 655-667 (2012).
  • [18] Wu W., Wang X., Geng P., Efficiency analysis for three phase grid-tied PV inverter. Proc. ICIT2008, Chengdu, China, pp. 1-5 (2008).
  • [19] Geng P., Wu W., Huang M., Blaabjerg F., Efficiency analysis on a two-level three-phase quasi-softswitching inverter. Proc. APEC 2013, Long Beach, CA, USA, pp. 1206-1212 (2013).
  • [20] Musavi F., Eberle W., Dunford W.G., A High-Performance Single-Phase Bridgeless Interleaved PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers. IEEE Trans. Ind. Appl. 47(3): 1833-1843 (2011).
  • [21] Hamalainen H., Pyrhonen J., NergJ., TalvitieJ., AC Resistance Factor of Litz-Wire Windings Used in Low-Voltage High-Power Generators. IEEE Trans. Ind. Electron. 61(2): 693-700 (2014).
  • [22] Dowell P.L., Effects of eddy currents in transformer windings. IEE Proceeding 113(8): 1387-1394 (1966).
  • [23] Matsumori H., Shimizu T., Takano K., Ishii H., Iron loss calculation of AC filter inductor for three phase PWM inverter. Proc. ECCE 2012, Raleigh, NC, pp. 3271-3278 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c1d5da7-53d2-4a6d-a9c6-2f3dc77a3421
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.