PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

From full-scale testing of steel lattice towers to stochastic reliability analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of the steel lattice telecommunication structure exposed to the wind pressure, whose average value is treated as the Gaussian random variable. The Least Squares Method is provided here for symbolic recovery of the polynomial responses of this structure in addition to the given uncertainty source and it serves to the twentieth order perturbation-based approximations for the first four probabilistic moments and coefficients. Static numerical analysis has been carried out by the use of the incremental BFGS (Broyden–Fletcher–Goldfarb–Shanno) procedure necessary for the so-called P-delta effect in steel structures, while the basic statistics of the ultimate limit state have been included into the formulas for the reliability indices of both first and second order. This study shows that the safety margin of such structures is definitely wider than it follows the basic Eurocodes statements, which means that designed durability period for these telecommunication structures is definitely longer.
Rocznik
Strony
371--388
Opis fizyczny
Bibliogr. 35 poz., rys. kolor.
Twórcy
autor
  • Chair of Structural Reliability Department of Structural Mechanics Faculty of Civil Engineering, Architecture and Environmental Engineering Łódź University of Technology Al. Politechniki 6 90-924 Łódź, Poland
autor
  • Chair of Structural Reliability Department of Structural Mechanics Faculty of Civil Engineering, Architecture and Environmental Engineering Łódź University of Technology Al. Politechniki 6 90-924 Łódź, Poland
Bibliografia
  • 1. A. Flaga, Wind Engineering. Basis and Applications, Warsaw, Poland, 2008 [in Polish].
  • 2. B.W. Smith, Communication Structures, Thomas Telford Publishing, London, 2007.
  • 3. M. Belloli, Z. Rosa, A. Zasso, Wind loads on high slender tower: Numerical and experimental comparison, Engrg. Struct., 68, 24–32, 2014.
  • 4. C.F. Carril, N. Isyumov, M.L.R.F. Reyolando, Experimental study of the wind forces rectangular latticed communication towers with antennas, J. Wind Engrg. & Industrial Aerodyn., 91, 1007–1022, 2003.
  • 5. P. Martin, V.B. Elena, A.M. Loredo-Souza, E.B. Camaño, Experimental study of the effects of dish antennas on the wind loading of telecommunication towers, J. Wind Engrg. & Ind. Aerodyn., 149, 40–47, 2016.
  • 6. J.D. Holmes, Along-wind response of lattice towers – I. Aerodynamic damping and deflections, Engrg. Struct., 18, 7, 483–488, 1996.
  • 7. J.D. Holmes, Along-wind response of lattice towers – II. Effective load distributions, Engrg. Struct., 18, 7, 489–494, 1996.
  • 8. F. Albermani, S. Kitipornchai, R.W.K. Chan, Failure analysis of transmission towers, Engrg. Failure Anal., 16, 1922–1928, 2009.
  • 9. R.N. Prasad, G.M.S. Knight, S.J. Mohan, N. Lakshmanan, Studies on failure of transmission line towers in testing, Engrg. Struct., 35, 55–70, 2012.
  • 10. C.H. Nguyen, A. Freda, G. Solari, F. Tubino, Aeroelastic instability and wind-excited response of complex lighting poles and antenna masts, Engrg. Struct., 85, 264–276, 2015.
  • 11. M.P. Repetto, G. Solari, Dynamic along wind fatigue of slender and vertical structures, Engrg. Struct., 23, 1622–1633, 2001.
  • 12. M.P. Repetto, G. Solari, Wind-induced fatigue collapse of real slender structures, Engrg. Struct., 32, 3888–3898, 2010.
  • 13. P.S. Lee, G. McClure, Elastoplastic large deformation analysis of a lattice steel tower structure and comparison with full-scale tests, J. Constr. Steel Res., 63, 709–717, 2007.
  • 14. J. Szafran, An experimental investigation into failure mechanism of a full-scale 40 m high telecommunication tower, Engrg. Failure Anal., 54, 131–145, 2015.
  • 15. J. Szafran, K. Rykaluk, A full-scale experiment of a lattice telecommunication tower under breaking load, J. Constr. Steel Res., 120, 160–175, 2016.
  • 16. S. Kitipornchai, F. Albermani, Nonlinear finite element analysis of latticed transmission towers, Engrg. Struct., 15, 259–269, 1993.
  • 17. L. Carassale, G. Solari, Monte Carlo simulations of wind velocity fields on complex structures, J. Wind Engrg. & Ind. Aerodyn., 94, 323–339, 2006.
  • 18. R. Deoliya, T.K. Datta, Reliability analysis of a microwave tower for fluctuating mean wind with directional effect, Rel. Engrg. & System Safety, 67, 257–267, 2000.
  • 19. S. Au, J. Beck, First excursion probabilities for linear systems by very efficient important sampling, Prob. Engrg. Mech., 16, 193–207, 2001.
  • 20. M. Kamiński, J. Szafran, Random eigenvibrations of elastic structures by the response function method and the generalized stochastic perturbation technique, Arch. Civil & Mech. Engrg., 9, 4, 5–32, 2009.
  • 21. M. Kamiński, J. Szafran, Stochastic finite elements analysis and reliability of steel telecommunication towers, CMES: Comput. Model. Engrg. & Sci., 2060, 1, 1–25, 2009.
  • 22. M. Kleiber, T.D. Hien, The Stochastic Finite Element Method, Wiley, Chichester, 1992.
  • 23. M. Kamiński, The Stochastic Perturbation Method for Computational Mechanics, Wiley, Chichester, 2013.
  • 24. L. Katafygiotis, S. Cheung, Domain decomposition method for calculating the failure probability of linear dynamic systems subjected to Gaussian stochastic loads, J. Engrg. Mech., 132, 5, 465–486, 2006.
  • 25. B. Goller, H.J. Pradlwarter, G.I. Schuëller, Reliability assessment in structural dynamics, J. Sound & Vibr., 332, 2488–2499, 2013.
  • 26. M. Gioffre, V. Gusella, M. Grigoriu, Non-Gaussian wind pressure on prismatic buildings. I: Stochastic field, J. Struct. Engrg., 127, 9, 981–989, 2001.
  • 27. Autodesk Robot Structural Analysis User Manual, Autodesk, 2015.
  • 28. Maple User Manual v. 2014, Maplesoft, 2014.
  • 29. Eurocode 3: Design of steel structures. Towers, masts and chimneys. Tower and masts. European Committee for Standardization, Brussels, 2008.
  • 30. J Szafran, Research experiment: https://www.youtube.com/watch?v=AaVGCUEBoMw.
  • 31. G.A. Yuan, Z.A. Wei, Limited memory BFGS method with backtracking for symmetric nonlinear equations, Math. & Comput. Model., 54, 1, 2, 367–377, 2011.
  • 32. G.A. Yuan, Z. Wei, Z. Wang, S.B. Lu, Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization, Comput. Optim. & Appl., 54, 1, 45–64, 2013.
  • 33. R.E. Melchers, Structural Reliability Analysis and Prediction, Wiley, Chichester, 1999.
  • 34. W.Q. Jiang, Z.Q. Wang, G. McClure, G.L. Wang, J.D. Geng, Accurate modelling of joint effects in lattice transmission towers, Engrg. Struct., 33, 1817–1827, 2011.
  • 35. M. Kamiński, M. Solecka, Optimization of the truss-type structures using the generalized perturbation-based Stochastic Finite Element Method, Finite Elem. Anal. & Design, 63, 69–79, 2013.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c180670-09f7-41c7-a3e3-574fb555fec3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.