Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: The aim of this study was to determine whether the EPID detector can serve as an effective tool for interfractional dose control. Accurate radiotherapy delivery is vital for successful treatment, prompting advancements in dosimetry methods, particularly for dynamic techniques. Linear accelerators use kilovoltage and megavoltage X-rays to verify patient positioning, a standard practice essential for minimizing geometric and dosimetric errors. While integrated imaging systems typically use orthogonal radiographs, this method increases radiation exposure and fails to account for intra-fractional movements, risking undetected errors. To ensure patients receive the planned radiation dose, in-vivo dosimetry is performed by measuring the dose at various locations on the patient's body, which simultaneously verifies correct positioning. Discrepancies can reveal incorrect positioning or significant movements, thus enhancing treatment accuracy. This study investigates transit dosimetry using Electronic Portal Imaging Devices (EPID) to verify patient positioning during treatment. It establishes tolerance ranges and response criteria for the head and neck and pelvic areas, providing insights into the concordance between planned and actual dose distributions. Material and methods: The analysis included 30 patients treated with dynamic techniques in the pelvic (Pelvis) and head and neck (Head&Neck) areas. For each fraction, a fluence map was recorded using the EPID detector. This allowed for repeated comparisons between summary fluence maps across treatment fractions, totaling 1552 comparisons for the Head&Neck area and 2339 for the Pelvis area. To evaluate the correspondence between fluence map pairs, gamma indices were calculated using specified accuracy criteria. Results: Statistical analysis employed Chi-squared or Fisher's exact test, establishing significant correspondence within defined limits. For the Head&Neck area, repeatability was found within 3 mm and 4%; for the Pelvis area, it was within 4 mm and 4%. Conclusions: This method of verifying treatment repeatability is practical for clinical use, requiring no additional dose and not hindering treatment delivery.
Słowa kluczowe
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Medical Physics Department, Zagłębiowskie Oncology Center, Dąbrowa Górnicza, Poland
autor
- Medical Physics Department, Zagłębiowskie Oncology Center, Dąbrowa Górnicza, Poland
autor
- Medical Physics Department, Zagłębiowskie Oncology Center, Dąbrowa Górnicza, Poland
autor
- Radiotherapy Planning Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
autor
- Faculty of Science and Technology, University of Silesia, Katowice, Poland
Bibliografia
- 1. Van Herk M. Errors and Margins in Radiotherapy. Semin Radiat Oncol. 2004;14(1):52-64. https://doi.org/10.1053/j.semradonc.2003.10.003
- 2. Schreibmann E, Dhabaan A, Elder E, Fox T. Patient-specific quality assurance method for VMAT treatment delivery. Med Phys. 2009;36(10):4530-4535. https://doi.org/10.1118/1.3213085
- 3. Kang H, Lovelock DM, Yorke ED, Kriminski S, Lee N, Amols HI. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance. J Appl Clin Med Phys. 2010;12(1):86-89. https://doi.org/10.1120/jacmp.v12i1.3270
- 4. Quan, EM, Li X, Li Y, et al. A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment. Int J Radiat Oncol Biol Phys. 2012;83(4):1169-1178. https://doi.org/10.1016/j.ijrobp.2011.09.015
- 5. Klein EE, Drzymala RE, Purdy JA, Michalski J. Errors in radiation oncology: a study in pathways and dosimetric impact. J Appl Clin Med Phys. 2005;6(3):81-94. https://doi.org/10.1120/jacmp.v6i3.2105
- 6. Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4);53-83. https://doi.org/10.1002/mp.12810
- 7. Guan H, Hammoud R, Yin FF. A positioning QA procedure for 2D/2D (kV/MV) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup. J Appl Clin Med Phys. 2009;10(4):273-280. https://doi.org/10.1120/jacmp.v10i4.2954
- 8. Mijnheer B, Beddar S, Izewska J, et al. In vivo dosimetry in external beam radiotherapy. Med Phys. 2013;40(7):070903. https://doi.org/10.1118/1.4811216
- 9. Olaciregui-Ruiz I, Vivas-Maiques B, Kaas J, et al. Transit and non-transit 3D EPID dosimetry versus detector arrays for patient specific QA. J Appl Clin Med Phys. 2019;20(6):79-90. https://doi.org/10.1002/acm2.12610
- 10. Olaciregui ‐ Ruiz I, Rozendaal R, Kranen S, et. al. The effect of the choice of patient model on the performance of in vivo 3D EPID dosimetry to detect variations in patient position and anatomy. Med Phys. 2020;47(1):171-180. https://doi.org/10.1002/mp.13893
- 11. Ricketts K, Navarro C, Lane K, et al. Clinical experience and evaluation of patient treatment verification with a transit dosimeter. Int J Radiat Oncol Biol Phys. 2016;95(5):1513-1519. https://doi.org/10.1016/j.ijrobp.2016.03.021
- 12. Blake SJ, McNamara AL, Deshpande S, et al. Characterization of a novel EPID designed for simultaneous imaging and dose verification in radiotherapy. Med Phys. 2013;40(9):091902. https://doi.org/10.1118/1.4816657
- 13. Ślosarek K., Plaza D, Nas A, et al. Portal dosimetry in radiotherapy repeatability evaluation. J Appl Clin Med Phys. 2021;22(1):156-164. https://doi.org/10.1002/acm2.13123
- 14. Li Y, Zhu J, Shi J, et. al. Investigating the effectiveness of monitoring relevant variations during IMRT and VMAT treatment by EPID ‐ based 3D in vivo verification performed using planning CTs. PLoS One. 2019;14(6):e0218803. https://doi.org/10.1371/journal.pone.0218803
- 15. Mans A, Wendling M, McDermott LN, et al. Catching errors within vivo EPID dosimetry. Med Phys. 2010;37(6Part2):2638-2644. https://doi.org/10.1118/1.3397807
- 16. Klimas A, Grządziel A, Plaza D, et al. EPID – a useful interfraction QC tool. Polish J Med Phys Eng. 2019;25(4):221-228. https://doi.org/10.2478/pjmpe-2019-0029
- 17. Dogan N, Mijnheer BJ, Padgett K, et al. Use of EPIDs for Patient-Specific IMRT and VMAT QA: AAPM Task Group Report 307. Med Phys. 2023;50(8):e865-e903. https://doi.org/10.1002/mp.16536
- 18. Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36(11):5359-73. https://doi.org/10.1118/1.3238104
- 19. Winiecki J, Morgaś T, Majewska K, et. al. The gamma evoluation metod as a routine QA procedure of IMRT. Rep Pract Oncol Radiotherapy. 2009;14(5):162-168. https://doi.org/10.1016/S1507-1367(10)60031-4
- 20. Ślosarek K, Grządziel A, Osewski W, et. al. Beam rate influence on dose distribution and fluence map in IMRT dynamic technique. Rep Pract Oncol Radiotherapy. 2019;17:97-103. https://doi.org/10.1016/j.rpor.2012.01.004
- 21. Teoh M, Clark CH, Wood K, et. al. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011;84(1007):967-996. https://doi.org/10.1259/bjr/22373346
- 22. Varian Medical Systems. Portal Dosimetry Reference Guide ARIA ® Radiation Therapy Management.; 2019
- 23. Law DA, Harms WB, Mutic S, Prudy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656-661. https://doi.org/10.1118/1.598248
- 24. Cubillos Mesías M, Boda-Heggemann J, Thoelking J, et. al. Quantification and Assessment of Interfraction Setup Errors Based on Cone Beam CT and Determination of Safety Margins for Radiotherapy. PLoS One. 2016;11(3):e0150326. https://doi.org/10.1371/journal.pone.0150326
- 25. Suzuki M, Nishimura Y, Nakamatsu K, et. al. Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins. Radiother Oncol. 2006;78(3):283-290. https://doi.org/10.1016/j.radonc.2006.03.006
- 26. Kruszyna‐Mochalska M. EPID ‐ based daily veri fi cation of reproducibility of patients' irradiation with IMRT plans. Rep Pract Oncol Radiother. 2018;23(5):309-314. https://doi.org/10.1016/j.rpor.2018.05.003
- 27. Klimas A, Janik M, Bałamut K, Ślosarek K, Cholewka A. Wykorzystanie detektora EPID do kontroli powtarzalności precyzji realizacji radioterapii. Inżynier i Fizyk Medyczny. 2024;13(2):117
- 28. Glide-Hurst CK, Lee P, Yock AD, et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys. 2021;109(4):1054-1075. https://doi.org/10.1016/j.ijrobp.2020.10.021
- 29. Olaciregui-Ruiz I, Beddar S, Greer P, et al. In vivo dosimetry in external beam photon radiotherapy: Requirements and future directions for research, development, and clinical practice. Phys Imaging Radiat Oncol. 2020;15:108-116. https://doi.org/10.1016/j.phro.2020.08.003
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c15245b-2740-4227-99ec-1fe649b235da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.