PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Microalgae Biomass Modelling and Optimisation for Sustainable Biotechnology – A Concise Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The autotrophic forms of microalgae are referred to as "efficient biological factories", because they play a significant role in CO2 removal from the atmosphere by utilizing it for the process of photosynthesis. The industrial application of microalgae biomass includes the production of cosmetics, health products, fertilisers, biofuel, feeds, and food. Microalgae biomass is also an important tool used in the treatment of wastewater. The current review is aimed at reviewing the progress and prospects of microalgae resource modelling and optimisation as a tool for sustainable biotechnology. The mechanism of biomass production by microalgae tends to vary according to whether the microalgae are autotrophic, heterotrophic, or mixotrophic organisms. In the current study, the modelling and optimisation of microalgae biomass production were discussed, as well as the modelling of CO2 sequestration, light intensity, nutrients, and photobioreactor. The role of microalgal biomass production in attaining sustainable biotechnology has also been extensively studied. Microalgae are an emerging tool used in the phycoremediation of wastewater and reduction of high CO2 level. The modelling and optimisation of microalgae biomass production will help to upscale the production of the microalgal based fuel and bioproducts from model scale to the money-making level.
Rocznik
Strony
309--318
Opis fizyczny
Bibliogr. 88 poz., rys.
Twórcy
  • School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511436, China
  • Departments of Environmental Management, Kaduna State University, Tafawa Balewa Way, Kabala Coastain 800283, Kaduna, Nigeria
  • School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511436, China
Bibliografia
  • 1. Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275.
  • 2. Acién, F.G., Molina, E., Fernández-Sevilla, J.M., Barbosa, M., Gouveia, L., Sepúlveda, C., Bazaes, J., Arbib, Z. 2017. 20 - Economics of microalgae production. in: Microalgae-Based Biofuels and Bioproducts, (Eds.) C. Gonzalez-Fernandez, R. Muñoz, Woodhead Publishing, 485–503.
  • 3. Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., Morones-Ramírez, J.R. 2019. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18(1), 178.
  • 4. Alvarez, A.L., Weyers, S.L., Goemann, H.M., Peyton, B.M., Gardner, R.D. 2021. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 54, 102200.
  • 5. Amaro, H.M., Sousa-Pinto, I., Malcata, F.X., Guedes, A.C. 2017. Microalgal fatty acids – from harvesting until extraction. In: Microalgae-Based Biofuels and Bioproducts, (Eds.) C. Gonzalez-Fernandez, R. Muñoz, Woodhead Publishing, 369–400.
  • 6. Araújo, R., Vázquez Calderón, F., Sánchez López, J., Azevedo, I.C., Bruhn, A., Fluch, S., Garcia Tasende, M., Ghaderiardakani, F., Ilmjärv, T., Laurans, M., Mac Monagail, M., Mangini, S., Peteiro, C., Rebours, C., Stefansson, T., Ullmann, J. 2021. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy, 7.
  • 7. Balan, V. 2014. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN biotechnology, 2014, 463074–463074.
  • 8. Béchet, Q., Shilton, A., Guieysse, B. 2013. Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnology Advances, 31(8), 1648–1663.
  • 9. Chu, W.-L. 2017. Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European Journal of Phycology, 52(4), 419–437.
  • 10. Costa, J.A.V., de Morais, M.G. 2014. Chapter 1 - An Open Pond System for Microalgal Cultivation. in: Biofuels from Algae, (Eds.) A. Pandey, D.-J. Lee, Y. Chisti, C.R. Soccol, Elsevier. Amsterdam, 1–22.
  • 11. Daneshvar, E., Wicker, R.J., Show, P.-L., Bhatnagar, A. 2022. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review. Chemical Engineering Journal, 427, 130884.
  • 12. Davidson, K., Gurney, W.S.C. 1999. An investigation of non-steady-state algal growth. II. Mathematical modelling of co-nutrient-limited algal growth. Journal of Plankton Research, 21.
  • 13. Delgadillo-Mirquez, L., Lopes, F., Taidi, B., Pareau, D. 2016. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18–26.
  • 14. Delgado, E., Valles-Rosales, D.J., Flores, N.C., Reyes-Jáquez, D. 2021. Evaluation of fish oil content and cottonseed meal with ultralow gossypol content on the functional properties of an extruded shrimp feed. Aquaculture Reports, 19, 100588.
  • 15. Dixon, C., Wilken, L.R. 2018. Green microalgae biomolecule separations and recovery. Bioresources and Bioprocessing, 5(1), 14.
  • 16. Duarte, J.H., Fanka, L.S., Costa, J.A.V. 2016. Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresource Technology, 214, 159–165.
  • 17. Ebhodaghe, S.O., Imanah, O.E., Ndibe, H. 2022. Biofuels from microalgae biomass: A review of conversion processes and procedures. Arabian Journal of Chemistry, 15(2), 103591.
  • 18. Eze, V.C., Velasquez-Orta, S.B., Hernández-García, A., Monje-Ramírez, I., Orta-Ledesma, M.T. 2018. Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32, 131–141.
  • 19. Fabris, M., Abbriano, R.M., Pernice, M., Sutherland, D.L., Commault, A.S., Hall, C.C., Labeeuw, L., McCauley, J.I., Kuzhiuparambil, U., Ray, P., Kahlke, T., Ralph, P.J. 2020. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy, 11.
  • 20. Field John, L., Richard Tom, L., Smithwick Erica, A.H., Cai, H., Laser Mark, S., LeBauer David, S., Long Stephen, P., Paustian, K., Qin, Z., Sheehan John, J., Smith, P., Wang Michael, Q., Lynd Lee, R. 2020. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences, 117(36), 21968–21977.
  • 21. Froehlich, H.E., Runge, C.A., Gentry, R.R., Gaines, S.D., Halpern, B.S. 2018. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proceedings of the National Academy of Sciences of the United States of America, 115(20), 5295–5300.
  • 22. Ganesan, R., Manigandan, S., Samuel, M.S., Shanmuganathan, R., Brindhadevi, K., Lan Chi, N.T., Duc, P.A., Pugazhendhi, A. 2020. A review on prospective production of biofuel from microalgae. Biotechnology reports (Amsterdam, Netherlands), 27, e00509–e00509.
  • 23. Gerotto, C., Norici, A., Giordano, M. 2020. Toward Enhanced Fixation of CO2 in Aquatic Biomass: Focus on Microalgae, 8.
  • 24. Guldhe, A., Ansari, F.A., Singh, P., Bux, F. 2017. Heterotrophic cultivation of microalgae using aquaculture wastewater: A biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 99, 47–53.
  • 25. Hannon, M., Gimpel, J., Tran, M., Rasala, B., Mayfield, S. 2010. Biofuels from algae: challenges and potential. Biofuels, 1(5), 763–784.
  • 26. Hill, J., Nelson, E., Tilman, D., Polasky, S., Tiffany, D. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103(30), 11206–11210.
  • 27. Jareonsin, S., Pumas, C. 2021. Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production, 9.
  • 28. Jennings, S., Stentiford, G.D., Leocadio, A.M., Jeffery, K.R., Metcalfe, J.D., Katsiadaki, I., Auchterlonie, N.A., Mangi, S.C., Pinnegar, J.K., Ellis, T., Peeler, E.J., Luisetti, T., Baker-Austin, C., Brown, M., Catchpole, T.L., Clyne, F.J., Dye, S.R., Edmonds, N.J., Hyder, K., Lee, J., Lees, D.N., Morgan, O.C., O’Brien, C.M., Oidtmann, B., Posen, P.E., Santos, A.R., Taylor, N.G.H., Turner, A.D., Townhill, B.L., Verner-Jeffreys, D.W. 2016. Aquatic food security: insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish and Fisheries, 17(4), 893–938.
  • 29. Jeswani, H.K., Chilvers, A., Azapagic, A. 2020. Environmental sustainability of biofuels: a review. Proceedings. Mathematical, physical, and engineering sciences, 476(2243), 20200351–20200351.
  • 30. Kasiri, S., Ulrich, A., Prasad, V. 2015. Kinetic modeling and optimization of carbon dioxide fixation using microalgae cultivated in oil-sands process water. Chemical Engineering Science, 137, 697–711.
  • 31. Khan, M.I., Shin, J.H., Kim, J.D. 2018a. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36.
  • 32. Khan, M.I., Shin, J.H., Kim, J.D. 2018b. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17(1), 36–36.
  • 33. Khanna, M., Crago, C.L., Black, M. 2011. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Interface focus, 1(2), 233–247.
  • 34. Kokou, F., Fountoulaki, E. 2018. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture, 495, 295–310.
  • 35. Kong, W., Huang, S., Yang, Z., Shi, F., Feng, Y., Khatoon, Z. 2020. Fish Feed Quality Is a Key Factor in Impacting Aquaculture Water Environment: Evidence from Incubator Experiments. Scientific reports, 10(1), 187–187.
  • 36. Kroumov, A.D., Módenes, A.N., Trigueros, D.E.G., Espinoza-Quiñones, F.R., Borba, C.E., Scheufele, F.B., Hinterholz, C.L. 2016. A systems approach for CO2 fixation from flue gas by microalgae—Theory review. Process Biochemistry, 51(11), 1817–1832.
  • 37. Lee, E., Jalalizadeh, M., Zhang, Q. 2015. Growth kinetic models for microalgae cultivation: A review. Algal Research, 12, 497–512.
  • 38. Leung, D.Y.C., Caramanna, G., Maroto-Valer, M.M. 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–443.
  • 39. Liu, S.L., Ma, M.D., Pan, Y.Z., Wei, L.L., He, C.X., Yang, K.M. 2013. Effects of light regime on the growth and photosynthetic characteristics of Alnus formosana and A. cremastogyne seedlings. Ying Yong Sheng Tai Xue Bao, 24(2), 351–358.
  • 40. Masojídek, J., Ranglová, K., Lakatos, G.E., Silva Benavides, A.M., Torzillo, G. 2021. Variables Governing Photosynthesis and Growth in Microalgae Mass Cultures. Processes, 9(5).
  • 41. McClain, A.M., Sharkey, T.D. 2019. Triose phosphate utilization and beyond: from photosynthesis to end product synthesis. Journal of experimental botany, 70(6), 1755–1766.
  • 42. Medipally, S.R., Yusoff, F.M., Banerjee, S., Shariff, M. 2015. Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed research international, 2015, 519513–519513.
  • 43. Metsoviti, M.N., Papapolymerou, G., Karapanagiotidis, I.T., Katsoulas, N. 2019. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants (Switzerland), 9(1), 31.
  • 44. Milledge, J.J. 2011. Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Bio/Technology, 10(1), 31–41.
  • 45. Milner, S., Holland, R.A., Lovett, A., Sunnenberg, G., Hastings, A., Smith, P., Wang, S., Taylor, G. 2016. Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB. Global change biology. Bioenergy, 8(2), 317–333.
  • 46. Mohammad Mirzaie, M.A., Kalbasi, M., Mousavi, S.M., Ghobadian, B. 2016. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep Biochem Biotechnol, 46(2), 150–156.
  • 47. Mohsenpour, S.F., Hennige, S., Willoughby, N., Adeloye, A., Gutierrez, T. 2021. Integrating microalgae into wastewater treatment: A review. Science of The Total Environment, 752, 142168.
  • 48. Molazadeh, M., Ahmadzadeh, H., Pourianfar, H.R., Lyon, S., Rampelotto, P.H. 2019. The Use of Microalgae for Coupling Wastewater Treatment With CO(2) Biofixation. Frontiers in bioengineering and biotechnology, 7, 42–42.
  • 49. Morales-Sánchez, D., Martinez-Rodriguez, O.A., Martinez, A. 2017. Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. Journal of Chemical Technology & Biotechnology, 92(5), 925–936.
  • 50. Muralikrishna, I.V., Manickam, V. 2017. Chapter Three - Natural Resource Management and Biodiversity Conservation. in: Environmental Management, (Eds.) I.V. Muralikrishna, V. Manickam, Butterworth-Heinemann, 23–35.
  • 51. Murthy, G.S. 2011. Chapter 18 - Overview and Assessment of Algal Biofuels Production Technologies. in: Biofuels, (Eds.) A. Pandey, C. Larroche, S.C. Ricke, C.-G. Dussap, E. Gnansounou, Academic Press. Amsterdam, 415–437.
  • 52. Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C., Al-Jabri, H., Vatland, A.K., Kumar, G. 2021. Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1–20.
  • 53. Nzayisenga, J.C., Farge, X., Groll, S.L., Sellstedt, A. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(1), 4.
  • 54. Onyeaka, H., Miri, T., Obileke, K., Hart, A., Anumudu, C., Al-Sharify, Z.T. 2021. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Science & Technology, 1, 100007.
  • 55. Packer, A., Li, Y., Andersen, T., Hu, Q., Kuang, Y., Sommerfeld, M. 2011. Growth and neutral lipid synthesis in green microalgae: A mathematical model. Bioresource technology, 102, 111–117.
  • 56. Pathak, J., Rajneesh, Maurya, P.K., Singh, S.P., Häder, D.-P., Sinha, R.P. 2018. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives, 6.
  • 57. Pham-Huy, L.A., He, H., Pham-Huy, C. 2008. Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89–96.
  • 58. Popp, J., Harangi-Rákos, M., Gabnai, Z., Balogh, P., Antal, G., Bai, A. 2016. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications. Molecules (Basel, Switzerland), 21(3), 285–285.
  • 59. Prasad, R., Gupta, S.K., Shabnam, N., Oliveira, C.Y-.B., Nema, A.K., Ansari, F.A., Bux, F. 2021. Role of microalgae in global CO2 sequestration: Physiological mechanism, recent development, challenges, and future prospective. Sustainability, 13(23).
  • 60. Raja, R., Coelho, A., Hemaiswarya, S., Kumar, P., Carvalho, I.S., Alagarsamy, A. 2018. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 740–747.
  • 61. Randrianarison, G., Ashraf, M.A. 2017. Microalgae: a potential plant for energy production. Geology, Ecology, and Landscapes, 1(2), 104–120.
  • 62. Ranjith Kumar, R., Hanumantha Rao, P., Arumugam, M. 2015. Lipid Extraction Methods from Microalgae: A Comprehensive Review, 2.
  • 63. Reid, W.V., Ali, M.K., Field, C.B. 2020. The future of bioenergy. Global Change Biology, 26(1), 274–286.
  • 64. Roostaei, J., Zhang, Y., Gopalakrishnan, K., Ochocki, A.J. 2018. Mixotrophic microalgae biofilm: A novel algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production. Scientific Reports, 8(1), 12528–12528.
  • 65. Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F. 2019. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709–722.
  • 66. Scheufele, F.B., Hinterholz, C.L., Zaharieva, M.M., Najdenski, H.M., Módenes, A.N., Trigueros, D.E.G., Borba, C.E., Espinoza-Quiñones, F.R., Kroumov, A.D. 2018. Complex mathematical analysis of photobioreactor system. Engineering in life sciences, 19(12), 844–859.
  • 67. Sforza, E., Enzo, M., Bertucco, A. 2014. Design of microalgal biomass production in a continuous photobioreactor: An integrated experimental and modeling approach. Chemical Engineering Research and Design, 92(6), 1153–1162.
  • 68. Sharma, P., Gujjala, L.K.S., Varjani, S., Kumar, S. 2022. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. Science of The Total Environment, 813, 152417.
  • 69. Silva, T.L., Moniz, P., Silva, C., Reis, A. 2021. The role of heterotrophic microalgae in waste conversion to biofuels and bioproducts. Processes, 9(7).
  • 70. Singh, J.S., Kumar, A., Rai, A.N., Singh, D.P. 2016. Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in microbiology, 7, 529–529.
  • 71. Singh, R., Parihar, P., Singh, M., Bajguz, A., Kumar, J., Singh, S., Singh, V.P., Prasad, S.M. 2017. Uncovering potential applications of cyanobacteria and algal metabolites in biology. Agriculture and Medicine: Current Status and Future Prospects, 8.
  • 72. Slegers, P.M., Wijffels, R.H., van Straten, G., van Boxtel, A.J.B. 2011. Design scenarios for flat panel photobioreactors. Applied Energy, 88(10), 3342–3353.
  • 73. Songolzadeh, M., Soleimani, M., Takht Ravanchi, M., Songolzadeh, R. 2014. Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions. The Scientific World Journal, 2014, 828131.
  • 74. Tan, K.W.M., Lee, Y.K. 2016. The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnology for Biofuels, 9, 255–255.
  • 75. Ugya, A.Y. 2021. The efficiency and antioxidant response of microalgae biofilm in the phycoremediation of wastewater resulting from tannery, textile, and dyeing activities. International Aquatic Research, 13(4), 289–300.
  • 76. Ugya, A.Y., Ajibade, F.O., Hua, X. 2021a. The efficiency of microalgae biofilm in the phycoremediation of water from River Kaduna. Journal of Environmental Management, 295, 113109.
  • 77. Ugya, A.Y., Ari, H.A., Hua, X. 2021b. Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. Ecotoxicology and Environmental Safety, 221, 112468.
  • 78. Ugya, A.Y., Hasan, D.u.B., Ari, H.A., Ajibade, F.O., Imam, T.S., Abba, A., Hua, X. 2020a. Natural freshwater microalgae biofilm as a tool for the clean-up of water resulting from mining activities. All Life, 13(1), 644–657.
  • 79. Ugya, A.Y., Imam, T.S., Li, A., Ma, J., Hua, X. 2020b. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chemistry and Ecology, 36(2), 174–193.
  • 80. Ugya, A.Y., Meguellati, K., Aliyu, A.D., Abba, A., Musa, M.A. 2022. Microplastic stress induce bioresource production and response in microalgae: a concise review. Environmental Pollutants and Bioavailability, 34(1), 51–60.
  • 81. Ugya, Y., Adamu., Hasan, D.u.B., Tahir, S.M., Imam, T.S., Ari, H.A., Hua, X. 2021c. Microalgae biofilm cultured in nutrient-rich water as a tool for the phycoremediation of petroleum-contaminated water. International Journal of Phytoremediation, 1–9.
  • 82. Vale, M.A., Ferreira, A., Pires, J.C.M., Gonçalves, A.L. 2020. CO2 capture using microalgae. In: Advances in Carbon Capture, (Eds.) M.R. Rahimpour, M. Farsi, M.A. Makarem, Woodhead Publishing, 381–405.
  • 83. Vasile, N.S., Cordara, A., Usai, G., Re, A. 2021. Computational analysis of dynamic light exposure of unicellular algal cells in a flat-panel photobioreactor to support light-induced CO2. Bioprocess Development, 12.
  • 84. Xu, L., Weathers, P.J., Xiong, X.-R., Liu, C.-Z. 2009. Microalgal bioreactors: Challenges and opportunities. Engineering in Life Sciences, 9(3), 178–189.
  • 85. Yaakob, M.A., Mohamed, R.M., Al-Gheethi, A., Aswathnarayana Gokare, R., Ambati, R.R. 2021. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells, 10(2).
  • 86. Zafar, A.M., Javed, M.A., Aly Hassan, A., Mehmood, K., Sahle-Demessie, E. 2021. Recent updates on ions and nutrients uptake by halotolerant freshwater and marine microalgae in conditions of high salinity. Journal of Water Process Engineering, 44, 102382.
  • 87. Zhan, J., Rong, J., Wang, Q. 2017. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505–8517.
  • 88. Zhou, Z., Ringø, E., Olsen, R.E., Song, S.K. 2018. Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquaculture Nutrition, 24(1), 644–665.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c0f5bfb-7702-46cf-bc1f-0793d3cde663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.