PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cramér type large deviations for trimmed L-statistics

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose a new approach to the investigation of asymptotic properties of trimmed L-statistics and we apply it to the Cramér type large deviation problem. Our results can be compared with those in Callaert et al. (1982) – the first and, as far as we know, the single article where some results on probabilities of large deviations for the trimmed L-statistics were obtained, but under some strict and unnatural conditions. Our approach is to approximate the trimmed L-statistic by a non-trimmed L-statistic (with smooth weight function) based onWinsorized random variables. Using this method, we establish the Cramér type large deviation results for the trimmed L-statistics under quite mild and natural conditions.
Rocznik
Strony
101--118
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • St. Petersburg State University, Mathematics and Mechanics Faculty, 199034, St. Petersburg, Universitetskaya nab. 7/9, Russia
Bibliografia
  • [1] A. Aleskeviciene, Large and moderate deviations for L-statistics, Lithuanian Math. J. 31 (1991), pp. 145-156.
  • [2] V. Bentkus, F. Götze, and W. R. van Zwet, An Edgeworth expansion for symmetric statistics, Ann. Statist. 25 (1997), pp. 851-896.
  • [3] V. Bentkus and R. Zitikis, Probabilities of large deviations for L-statistics, Lithuanian Math. J. 30 (1990), pp. 215-222.
  • [4] S. Bjerve, Error bound for linear combinations of order statistics, Ann. Statist. 5 (1977), pp. 357-369.
  • [5] H. Boistard, Large deviations for L-statistics, Statist. Decisions 25 (2007), pp. 89-125.
  • [6] H. Callaert, M. Vandemaele, and N. Veraverbeke, A Cramér type large deviation theorem for trimmed linear combinations of order statistics, Comm. Statist. Theory Methods 11 (1982), pp. 2689-2698.
  • [7] H. A. David and H. N. Nagaraja, Order Statistics, third edition, Wiley, New York 2003.
  • [8] K. O. Friedrich, A Berry-Esseen bound for functions of independent random variables, Ann. Statist. 17 (1989), pp. 170-183.
  • [9] F. Gao and X. Zhao, Delta method in large deviations and moderate deviations for estimators, Ann. Statist. 39 (2011), pp. 1211-1240.
  • [10] F. Greselin, L. Madan, M. L. Puri, and R. Zitikis, L-functions, processes, and statistics in measuring economic inequality and actuarial risks, Stat. Interface 2 (2009), pp. 227-245.
  • [11] N. V. Gribkova, On analogues of Berry-Esseen inequality for truncated linear combinations of order statistics, Theory Probab. Appl. 38 (1993), pp. 142-149.
  • [12] N. V. Gribkova and R. Helmers, The empirical Edgeworth expansion for a Studentized trimmed mean, Math. Methods Statist. 15 (2006), pp. 61-87.
  • [13] N. V. Gribkova and R. Helmers, On the Edgeworth expansion and theM out of N bootstrap accuracy for a Studentized trimmed mean, Math. Methods Statist. 16 (2007), pp. 142-176.
  • [14] N. V. Gribkova and R. Helmers, On a Bahadur-Kiefer representation of von Mises statistic type for intermediate sample quantiles, Probab. Math. Statist. 32 (2012), pp. 255-279.
  • [15] N. V. Gribkova and R. Helmers, Second order approximations for slightly trimmed means, Theory Probab. Appl. 58 (2014), pp. 383-412.
  • [16] R. Helmers, Edgeworth expansions for trimmed linear combinations of order statistics, in: Proceedings of the Second Prague Symposium on Asymptotic Statistics, P. Mandl and M. Hušková (Eds.), North-Holland, Amsterdam 1979, pp. 221-232.
  • [17] R. Helmers, Edgeworth expansions for linear combinations of order statistics with smooth weight functions, Ann. Statist. 8 (1980), pp. 1361-1374.
  • [18] R. Helmers, A Berry-Esseen theorem for linear combinations of order statistics, Ann. Probab. 9 (1981), pp. 342-347.
  • [19] R. Helmers, Edgeworth expansions for linear combinations of order statistics, Mathematical Centre Tracts, Vol. 105, Mathematisch Centrum, Amsterdam 1982.
  • [20] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), pp. 13-30.
  • [21] D. M. Mason and G. K. Shorack, Necessary and sufficient conditions for asymptotic normality of trimmed L-statistics, J. Statist. Plan. Inference 25 (1990), pp. 111-139.
  • [22] H. Putter and W. R. van Zwet, Empirical Edgeworth expansions for symmetric statistics, Ann. Statist. 26 (1998), pp. 1540-1569.
  • [23] R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York 1980.
  • [24] G. R. Shorack, Asymptotic normality of linear combinations of functions of order statistics, Ann. Math. Statist. 40 (1969), pp. 2041-2050.
  • [25] G. R. Shorack, Functions of order statistics, Ann. Math. Statist. 43 (1972), pp. 412-427.
  • [26] G. R. Shorack and J. A. Wellner, Empirical Processes with Applications in Statistics, Wiley, New York 1986.
  • [27] S. M. Stigler, Linear functions of order statistics, Ann. Math. Statist. 40 (1969), pp. 770-788.
  • [28] S. M. Stigler, Linear functions of order statistics with smooth weight functions, Ann. Statist. 2 (1974), pp. 676-693.
  • [29] M. Vandemaele and N. Veraverbeke, Cramér type large deviations for linear combinations of order statistics, Ann. Probab. 10 (1982), pp. 423-434.
  • [30] A. W. van der Vaart, Asymptotic Statistics, Camb. Ser. Stat. Probab. Math., Vol. 3, Cambridge Univ. Press, Cambridge 1998.
  • [31] W. R. van Zwet, A Berry-Esseen bound for symmetric statistics, Z. Wahrsch. Verw. Gebiete 66 (1984), pp. 425-440.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c0b80fb-ed35-4f0c-b9a7-dc7c90b14fb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.