Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the development of a mathematical model of a bio-mechanical system: human ‒ power tool, on the example of an impact drill. The physical model of the operator's upper limb with 5 degrees of freedom, in accordance with ISO 10068 standard was used. The paper presents the results of theoretical analysis regarding elementary and net displacements for individual directions. Moreover mathematical relationships describing them were determined. The result of the synthesis of these relations and the adopted (in accordance with the standard) physical model of the upper limb is the general matrix form of differential equations of motion of the analysed bio-mechanical system, built using the Lagrange’s equations of the second kind.
Czasopismo
Rocznik
Tom
Strony
art. no. 2020108
Opis fizyczny
Bibliogr. 46 poz., 1 fot. kolor., rys., wykr.
Twórcy
autor
- Poznan University of Technology, Faculty of Mechanical Engineering and Management, Piotrowo 3 St, 60-965 Poznan
Bibliografia
- 1. P. Paczos, R. Wichniarek, K. Magnucki, Three‒point bending of sandwich beam with special structure of the core, Composite Structures, 201 (2018) 676 ‒ 682.
- 2. M. Obst, D. Kurpisz, P. Paczos, The experimental and analitical investigations of torsion phenomenon of thin‒walled cold formed channel beams subjected to four‒point bending, Thinn‒Walled Structures, 106 (2016) 179 ‒ 186.
- 3. P. Paczos, P. Wasilewicz, E. Magnucka‒Blandzi, Experimental and numerical investigations of five‒layered trapezoidal beams, Composite Structures, 145 (2016) 129 ‒ 141.
- 4. M. Obst, M. Rodak, P. Paczos, Limit load of cold formed thin‒walled nonstandards channel beams, Journal of Theoretical and Applied Mechanics, 54(4) (2016) 1369 ‒ 1377.
- 5. E. Magnucka‒Blandzi, P. Paczos, P. Wasilewicz, A. Wypych, Three‒point bending of seven layers beams ‒ theoretical and experimental studies, Archives of Civil Engineering, 62(2) (2016) 115 ‒ 133.
- 6. P. Paczos, Experimental investigations of C‒beams with non‒standard flanges, Journal of Constructional Steel Research, 93 (2014) 77 ‒ 87.
- 7. F. Harmit , B. Necib, Analysis of mechanical structures using plate finite element method under different boundary conditions, Diagnostyka, 19(2) (2018) 3 ‒ 9.
- 8. J. Blata, D. Šeděnka, L. Kašiar, P. Volna, Examining the condition of the ball and the ball track on the heavy machine ZP6600, Diagnostyka, 18(3) (2017) 85 ‒ 91.
- 9. Y. Basova, K. Nutsubidze, M. Ivanova, S. Slipchenko, A. Kotliar, Design and numerical simulation of the new design of the gripper for manipulating of the rotational parts, Diagnostyka, 19(4) (2018) 11 ‒ 18.
- 10. A. Wang, J. Wang, Temperature Distribution and Scuffing of Tapered Roller Bearing, Chinese Journal of Mechanical Engineering, 27(6) (2014) 1272 ‒ 1279.
- 11. K. Yan, N. Wang, Q. Zhai, Y. Zhu, J. Zhang, Q. Niu, Theoretical and experimental investigation on the thermal characteristics of double‒row tapered roller bearings of high speed locomotive, International Journal of Heat and Mass Transfer, 84 (2015) 1119 ‒ 1130.
- 12. J. Li, J. Xue, Z. Ma, Study on the Thermal Distribution Characteristics of High‒Speed and Light‒Load Rolling Bearing Considering Skidding, Applied Sciences, 1593(8) (2018) 1 ‒ 20.
- 13. H. Nourghassemi, H. Ghassemi, H. Taghva, Numerical Hydrodynamic Results of the Two Stedded Planing Hull, American Journal of Mechanical Engineering, 6(3) (2018) 93 ‒ 97.
- 14. S. Boulahrouz, Y. Avenas, A. Chehhat, CFD Simulation of Heat Transfer and Fluid Flow within Metalic Foam in Forced Convection Environment, Mechanics and Mechanical Engineering, 21(3) (2017) 611 ‒ 635.
- 15. S. Bigham, H. Shokouhmand, R. N. Isfahani, S. Yazdani, Fluid Flow and Heat Transfer Simulation in a Constricted Microchannel: Effects of Rarefaction, Geometry, and Viscous Dissipation, Numerical Heat Transfer Applications, 59(3) (2011) 209 ‒ 230.
- 16. V. Dmytriv, I. Dmytriv, I. Horodetskyy, T. Dmytriv, Analytical dynamic model of coefficient of friction of air pipeline under pressure, Diagnostyka, 20(4) (2019) 89 ‒ 94.
- 17. J. Jiang, T. He, H. Duan, B. Li, Electric Field Structure Analysis and Experimentation of Needle‒plate Type Electrospinning Machine, International Journal of Control and Automation, 7(1) (2014) 369 ‒ 378.
- 18. L. Chen, W. Lai, J. Wang, G. Jiang, Y. Zhou, Y. Chen, H. Liu, Z. Qin, L. Ke, L. Wang, Y. Shen, Study on Surface Electric Field Simulation of High Voltage Transmission Line Assembly, Journal of Power and Energy Engineering, 2 (2014) 554 ‒ 563.
- 19. R. S. Ahmad, A. B. Shaari, C. T. Han, Magnetic Field Simulation of Golay Coil, Journal of Fundamental Science, 4 (2008) 353 ‒ 361.
- 20. C. Ghnatios, F. Chinesta, A. Barasinski, Electrical Fields Simulation in Heterogenus Domain Using the Proper Generalized Decomposition, ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering; June 2016.
- 21. C. Zhang Y. Mao, S. Xie, Y. Zhang, Electric Field Simulation of Surge Capacitors with Typical Defects, IOP Conference Series: Materials Science and Engineering, 322 (2018) 072040.
- 22. T. Li, Y. Jiang, L. Zhao, Y. Wang, Electrical Field Simulation and Analysis of 1200 kV Gas Insulated Test Reactors, IOP Conference Series: Earth and Environmental Science, 237 (2019) 062048.
- 23. H. Benguesmia, N. M’izou, A. Boubakeur, Simulation of the potential and electric field distribution on high voltage insulator using the finite element method, Diagnostyka, 19(2) (2018) 41 ‒ 52.
- 24. H. Benguesmia, B. Bakri, S. Khadar, F. Hamrit, N. M’izou, Experimental study of pollution and simulation on insulators using COMSOL® under AC voltage, Diagnostyka, 20(3) (2019) 1 ‒ 9.
- 25. B. Mânescu, N. D. Stânescu, Dynamic Analisys of a Mechanism of an Engine with Variable Compression Ratio, IOP Conference Series: Materials Science and Engineering, 564 (2019) 012118.
- 26. Z. Cao, S. Cao, X. Xu, T. Han, H. Guo, Dynamic Analysis of the Harvester Seat, IOP Conference Series: Materials Science and Engineering, 452 (2018) 022013.
- 27. C. Copilusi, N. Dumitru, A. Margine, I. Geonea, Dynamic Analysis of a Human Ankle Joints Prothesis, IOP Conference Series: Materials Science and Engineering, 568 (2019) 012077.
- 28. S. Maraş, M. Yaman, Dynamic Analysis of Hybrid Laminated Composite Curved Beam, 3rd International Conference on Advanced Engineering Technologies, September 2019
- 29. S. Maraş, M. Yaman, M. F. Şansveren, Dynamic Analysis of Laminated Syntactic Foam Beams, 3rd International Conference on Advanced Engineering Technologies, September 2019
- 30. V. M. Chau, H. B. Vo, Structural Dynamics Analysis of 3-U Cube Sat, Applied Mechanics and Materials, 894 (2019) 164 - 170.
- 31. A. Khnaijar, R. Benamar, A discrete model for nonlinear vibrations of a simply supported cracked beams resting on elastic foundations, Diagnostyka, 18(3) (2017) 39 ‒ 46.
- 32. M. Guebailia, N. Ouelaa, The dynamic response of a continuous plate for different surface states, Diagnostyka, 18(4) (2017) 11 ‒ 17.
- 33. J. Zachwieja, Pipeline stress analysis under supporting structure vibrations, Diagnostyka, 18(2) (2017) 23 ‒ 30.
- 34. Y. Kharchenko, Ł. Dragun, Mathematical modelling of unsteady processes in electromechnical system of ring‒ball mill, Diagnostyka, 18(1) (2017) 25 ‒ 35.
- 35. EN ISO 5349-1 Mechanical Vibration - Measurement and Evaluation of Human Exposure to Hand-Transmitted Vibration - Part 1: General Requirements.
- 36. EN ISO 5349-2 Mechanical Vibration - Measurement and Evaluation of Human Exposure to Hand-Transmitted Vibration - Part 2: Practical Guidance for Measurement at the Workplace.
- 37. G. Bąk, E. Cukierman‒Rakoczy, Dynamic reaction of a human on vibrations by analysis of a single-dimensional biomechanical model, Biuletyn Wojskowej Akademii Technicznej, 67 - LXVII (4) (2018) 169 ‒ 181 (in Polish).
- 38. W. Mrukwa, J. Świder, A. Staniek, Assessment of vibration measurement possibility at the contact point of hands with the vibration source, Prace Naukowe Głównego Instytutu Górnictwa ‒ Górnictwo i Środowisko, 1 (2002) 91 ‒ 102.
- 39. A. M. Książek, Analysis of existing biodynamic models of the hand-arm system for human vibration isolation - the operator from vibrations emitted by hand tools, Czasopismo Techniczne 2M/1996, Wydawnictwo Politechniki Krakowskiej, 87 ‒ 114 (in Polish).
- 40. M. Nader, J. Korzeb, The Review of Biomechanical Models to Assess the Impact of Vibrations upon Human Organism, Materials of a 3rd National Symposium “Computer - Aided Systems for Engineering Works in Industry and Transportation”, 1999.
- 41. ISO 10068:1998 - Mechanical vibration and shock - Free, mechanical impedance of the human hand-arm system at the driving point.
- 42. M. W. Dobry, T. Hermann, Energy method of an evaluation of human mechanical and biomechanical systems, Modelowanie Inżynierskie, 17(48) (2013) 28 ‒ 36.
- 43. A. Antonucci, A. Barr, B. Martin, D. Rempel, Effect of bit wear on hammer drill handle vibration and productivity, Journal of Occupational and Environmental Hygiene, 14(8) (2017) 641 ‒ 649.
- 44. B. Jakubek, W. Rukat, Influence of a tool’s working diameter on the level of handle vibrations of an impact drill, Vibroengineering Procedia, 6 (2015) 288 ‒ 291.
- 45. B. Jakubek, W. Rukat, Comparison of vibration impact of an impact drill on the human body under different working conditions, Vibrations in Physical Systems, 27 (2017) 135 ‒ 142.
- 46. Handling instruction for Hitachi DH 22PH rotary hammer ‒ Code No. C99179291 F; downloaded from the site: https://hikoki-narzedzia.pl/do_pobrania; Access date: 5 II 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c0afe0a-1276-410c-a083-d01eceb0ad47