PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of a glass gatherer robot arm with a frictional damper

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical model of a friction damper used for damping vibration in glass gatherer robots was described. The damper with a lance was modelled using finite elements. Primary natural frequency of the system was determined. Numerical calculations were performed to determine the best operating parameters of the damper for excitations using a impulse of a force. Results of the damping decrement calculations for the friction damper model with a constant coefficient of friction and for the model, in which the coefficient of friction varied depending on the sliding velocity and the normal pressure occurring at the contact surfaces of the damper’s friction rings, were presented. Based on numerical simulations, the values of relative displacements between the damper’s friction rings were also determined.
Słowa kluczowe
Rocznik
Strony
127--140
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Wroclaw University of Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
autor
  • Instytut Lotnictwa, Warszawa, Poland
  • Wroclaw University of Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
autor
  • Wroclaw University of Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
Bibliografia
  • [1] CHOROSZY T., MAREK B., ROSZKOWSKI A., SKOCZYŃSKI W., SZYMKOWSKI J., 2005, Vibration measurement of glass gatherer robots during the implementation of the technological cycle, Przegląd Mechaniczny, LXIV/9, 196-199, (in Polish).
  • [2] SKOCZYŃSKI W., KRZYŻANOWSKI J., 2003, Dynamic properties testing of glazier’s robot structure, Modern trends in manufacturing, Second International CAMT Conference, Wrocław 20-21 February 2003, PWr, Wrocław, 335-342.
  • [3] SZYMKOWSKI J., SKOCZYŃSKI W., KRZYŻANOWSKI J., ROSZKOWSKI A., 2003, Analysis of Glazier’s Robot Structure Dynamic Behaviours, Annals of DAAAM for 2003 & Proceedings of the 14th International DAAAM Symposium, Intelligent Manufacturing & Automation, Focus on Reconstruction and Development, Sarajevo, October 22-25, Vienna, 459-460.
  • [4] STEMBALSKI M., SKOCZYŃSKI W., ROSZKOWSKI A., 2011, Numerical model of friction damper for glass pick-up robot, Techniki komputerowe w inżynierii, Bełchatów, 351-252.
  • [5] STEMBALSKI M., SKOCZYŃSKI W., ROSZKOWSKI A., 2012, Numerical model of frictional damper for glass – making robot lance, Journal of Kones, 19/1, 391-398.
  • [6] ADAMs User’s Reference Manual, 2001, MDI, Michigan, USA.
  • [7] STEMBALSKI M., PREŚ P., SKOCZYŃSKI W., 2013, Determination of the friction coefficient as a function of sliding speed and normal pressure for steel C45 and steel 40HM, Archives of Civil and Mechanical Engineering, 13/4, 444-448.
  • [8] OSIŃSKI Z., 1997, Damping of vibration, Wydawnictwo Naukowe PWN, Warsaw, (in Polish).
  • [9] Abaqus.6.9 software documentation.
  • [10] CRC Handbook of Physical Quantities, CRC Press. 1997, 145-156.
  • [11] LAWROWSKI Z., 2009, Tribology – Friction, wear and lubrication, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, (in Polish).
  • [12] CHEN M., KATO T., ADACHI K., 2002, The comparison of sliding speed and normal load effect on friction coefficient of self-mated Si3N4 and SiC under water lubrication, Tribology International, 35/3, 129-135.
  • [13] FEYZULLAHOGLE E., SAFFAG Z., 2008, The tribological behavior of different engineering plastics under dry friction conditions, Materials and Design, 29, 205-211.
  • [14] GRZESIK W., NIESŁONY P., 2004, Prediction of friction and heat flow in machining incorporating therophisical properties of the coating-chip interface, Wear 256/1-2, 108-117.
  • [15] SPIJKER P., ANCIAUX G., MOLINARI J., 2013, Relation between roughness, temperature and dry sliding friction at the atomic scale, Tribology International, 59, 222-229.
  • [16] KWIATKOWSKA E., 2008, The influence of friction in fem simulation of chip formation, Advances in Manufacturing Science and Technology, 32/2, 39-51.
  • [17] RECH J., CLAUDIN C., ERAMON E., 2009, Identification of a friction model – Application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool, Tribology International, 42, 738-744.
  • [18] TYAGI R., XIONG D., LI J., 2011, Effect of load and sliding speed on friction and wear behaviour of silver/ h-BN containing Ni-base P/M composites, Wear, 270, 423-430.
  • [19] YANG J., GU W., PAN L.M., SONG K., CHEN X., QUI T., 2011, Friction and wear properties of in situ (TiB2+TiC)/Ti3SiC2 composites, Wear, 271, 2940-2946.
  • [20] ZEMZEMI F., RECH J., DOGUI A., KAPSTA P., 2009, Identification of the friction model at tool/chip/ workpiece interfaces in dry machining of AISI4142 treated steel, Journal of Materials Processing Technology, 209, 3978-3990.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c086399-c129-42bc-92b2-a9fe8c927232
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.