PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffraction enhancement using the double sparse dictionary method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seismic diffraction delivers high-precision imaging of subsurface discontinuities and objects. As diffraction is characterised by weak energy, separating diffraction from full wavefields is an essential pre-imaging step. However, traditional diffraction separation methods generally produce unsatisfactory separation results for datasets with low signal-to-noise ratios. Accordingly, we propose a novel diffraction separation method that incorporates plane-wave destruction and the double sparse dictionary algorithm to improve separation quality. The plane-wave destruction method is used to suppress strong reflection, whereas the double sparse dictionary can simultaneously extract diffracted signals. A robust plane-wave destruction method using the Hilbert transform is employed to improve the stability and accuracy of slope estimation. The double sparse dictionary algorithm has better performance when sparsely representing seismic signals and can effectively extract weak diffraction with a high signal-to-noise ratio. Synthetic and field examples demonstrate the effectiveness of the proposed method in removing strong reflection and enhancing weak diffraction. Overall, the proposed method is conducive to detect small structures and offers a new resource for seismic structural interpretation.
Czasopismo
Rocznik
Strony
1259--1271
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
Bibliografia
  • 1. Aharon M, Elad M, Bruckstein A (2006) The-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322
  • 2. Bashir Y, Ghosh DP, Sum CW (2018) Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia. Acta Geophysica 66(3):305
  • 3. Bashir Y, Babasafari AA, Alashloo SYM (2021) Seismic wave propagation characteristics using conventional and advanced modeling algorithms for D-data imaging. J Seism Explor 30(2021):21–44
  • 4. Bauer A, Schwarz B, Gajewski D (2017) Utilizing diffraction in wavefront tomography. Geophysics 82(2):R65–R73. https://doi.org/10.1190/geo2016-0396.1
  • 5. Belfer I, Bruner I, Keydar S, Kravtsov A, Landa E (1998) Detection of shallow objects using refracted and diffracted seismic waves. J Appl Geophys 38:155–168
  • 6. Berryhill JR (1977) Diffraction response for nonzero separation of source and receiver. Geophysics 42(6):1158–1176. https://doi.org/10.1190/1.1440781
  • 7. Cai J-F, Ji H, Shen Z, Ye G-B (2014) Data-driven tight frame construction and image denoising. Appl Comput Harmon Anal 37(1):89–10. https://doi.org/10.1016/j.acha.2013.10.001
  • 8. Chen Y, Ma J, Fomel S (2016) Double-sparsity dictionary for seismic noise attenuation. Geophysics 81(2):1MA-Z17: https://doi.org/10.1190/geo2014-0525.1
  • 9. Chen Y, Huang W, Zhou Y, Liu W, Zhang D (2020) Plane-wave orthogonal polynomial transform for amplitude-preserving noise attenuation. Geophys J Int 222(3):2207–2223. https://doi.org/10.1093/gji/ggy267
  • 10. de Figueiredo JJS, Oliveiar F, Esmi E, Freitas L, Schleicher J, Novais A (2013) Automatic detection and imaging of diffraction points using pattern recognition. Geophys Prospect 61:368–379
  • 11. Decker L, Klokov A, Fomel S (2013) Comparison of seismic diffraction imaging techniques: plane wave destruction versus apex destruction. SEG technical program expanded abstracts 2013, Society of Exploration Geophysicists, pp 4054–4059
  • 12. Durall R, Tschannen V, Pfreundt FJ, Keuper J (2020) Synthesizing seismic diffractions using a generative adversarial network. SEG technical program expanded abstracts, pp 1491–1495
  • 13. Fomel S (2002) Applications of plane-wave destruction filters. Geophysics 67(6):1946–1960. https://doi.org/10.1190/1.1527095
  • 14. Kim S, Seol SJ, Byun J, Oh S (2022) Extraction of diffractions from seismic data using convolutional U-net and transfer learning. Geophysics 87:V117–V129
  • 15. Klokov A, Baina R, Landa E, Thore E, Tarrass I (2010) Diffraction imaging for fracture detection: synthetic case study. In: 80th Annual international meeting, SEG, expanded abstracts, pp 3354–3358
  • 16. Kong X, Wang D-Y, Li Z-C, Zhang R-X, Hu Q-Y (2020) Separating and imaging diffraction in dip domain on the basis of slope analysis. Appl Geophys 17(1):103–110. https://doi.org/10.1007/s11770-020-0855-1
  • 17. Krey T (1952) The significance of diffraction in the investigation of faults. Geophysics 17(4):843–858. https:// doi. org/ 10. 1190/1.1437815
  • 18. Landa E, Shtivelman V, Gelchinsky B (1987) A method for detection of diffracted waves on common-offset sections. Geophys Prospect 35(4):359–373
  • 19. Landa E, Fomel S, Reshef M (2008) Separation, imaging, and velocity analysis of seismic diffraction using migrated dip-angle gathers. SEG technical program expanded abstracts, Society of Exploration Geophysicists, pp 2176–2180
  • 20. Li C, Zhao J, Peng S, Cui X, Lin P (2020) Separating and imaging diffraction of seismic waves in the full-azimuth dip-angle domain. J Geophys Eng 17(2):339–356. https://doi.org/10.1093/jge/gxz110
  • 21. Liang Z, Jingtian T (2019) Seismic data denoising via shear let transform and data-driven tight frame. Acta Geologica Sinica 93(s1):298–299. https://doi.org/10.1111/1755-6724.14105
  • 22. Lin P, Peng SP, Zhao JT, Cui XQ, Du WF (2018) Accurate diffraction imaging for detecting small-scale geologic discontinuities. Geophysics 83(5):S447–S457
  • 23. Lin P, Zhao J, Peng S, Cui X (2021) Diffraction separation by variational mode decomposition. Geophys Prospect 69(5):1070–1085. https://doi.org/10.1111/1365-2478.13093
  • 24. Liu Y, Fomel S (2013) Seismic data analysis using local time-frequency decomposition. Geophys Prospect 61(3):516–525
  • 25. Liu Y, Fomel S, Liu G (2010) Nonlinear structure-enhancing filtering using plane-wave prediction. Geophys Prospect 58(3):415–427
  • 26. Liu C, Chen C, Wang D, Liu Y, Wang S, Zhang L (2015) Seismic dip estimation based on the two dimensional Hilbert transform and its application in random noise attenuation. Appl Geophys 12(1):55–63
  • 27. Lowney B, Lokmer I, O’Brien GS, Bean CJ (2021) Pre-migration diffraction separation using generative adversarial networks. Geophys Prospect 69:949–967
  • 28. Mairal J, Bach F, Ponce J, Sapiro G (2008) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11(1):19–60
  • 29. Ophir B, Lustig M, Elad M (2011) Multi-scale dictionary learning using wavelets. IEEE J Sel Top Sign Proces 5(5):1014–1024. https://doi.org/10.1109/JSTSP.2011.2155032
  • 30. Reshef M (2008) Interval velocity analysis in the dip-angle domain. Geophysics. https://doi.org/10.1190/1.2957944
  • 31. Sheng TJ, Zhao JT (2022) Separation and imaging of diffractions using a dilated convolutional neural network. Geophysics 87(3):S117–S127
  • 32. Taner MT, Fomel S, Landa E (2006) Separation and imaging of seismic diffraction using plane-wave decomposition. In: 76th Annual international meeting, SEG, expanded abstracts, pp 2401–2405
  • 33. Tang G, Ma JW (2011) Application of total-variation-based curvelet shrinkage for three-dimensional seismic data denoising. IEEE Geosci Remote Sens Lett 8(1):103–107
  • 34. Trorey AW (1970) A simple theory for seismic diffraction. Geophysics 35(5):762–784. https://doi.org/10.1190/1.1440129
  • 35. Tyiasning S, Merzlikin D, Cooke D, Fomel S (2015) A comparison of diffraction imaging to incoherence and curvature. Lead Edge 35(1):86–89. https://doi.org/10.1190/tle35010086.1
  • 36. Zhao X, Li Y, Zhuang GH, Zhang C, Han X (2016) 2-D TFPF based on contourlet transform for seismic random noise attenuation. J Appl Geophys 129:158–166
  • 37. Zhao J, Yu C, Peng S, Chen Z (2019a) Online dictionary learning method for extracting GPR diffraction. J Geophys Eng 16(6):1116–1123. https://doi.org/10.1093/jge/gxz081
  • 38. Zhao J, Sun X, Peng S, Wei W, Liu T (2019b) Separating prestack diffraction with SVMF in the flattened shot domain. J Geophys Eng 16(2):389–398
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c003db3-95ed-44c5-8e72-c6ccbbdc867c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.