PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary Experimental Investigation of Cut-Resistant Materials: A Biomimetic Perspective

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the work was the preliminary experimental investigation of cut-resistant materials including a biomimetic perspective. The effects of the cutting were expressed as static and dynamic cut resistance of the following materials: knitted fabrics, woven fabrics, continuously coated knitted fabrics, and dot-coated knitted fabrics. The cutting process gives rise to frictional forces, but the current test methods for cut-resistant gloves are not designed to measure them. Therefore additionally, the cut resistance of the material was evaluated using a modified procedure based on the standard EN 1082-1, taking into consideration grip strength tests to assess if there is a potential correlation between cut resistance and anti-slip properties.
Rocznik
Strony
411--418
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Central Institute for Labour Protection – National Research Institute, Department of Personal Protective Equipment, 48 Wierzbowa, Lodz, Poland
  • Central Institute for Labour Protection – National Research Institute, Department of Personal Protective Equipment, 48 Wierzbowa, Lodz, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego, 90-924 Lodz, Poland
Bibliografia
  • [1] Irzmańska, E., Tokarski, T. (2017). A new method of ergonomic testing of gloves protecting against cuts and stabs during knife use. Applied Ergonomics, 61, 102-114.
  • [2] Claudon, L. (2006). Influence on grip of knife handle surface characteristics and wearing protective gloves. Applied Ergonomics, 37, 729-735.
  • [3] Yu, A., Yip, J. (2019). Case study on the effect of fit and material of sports gloves on hand performance. Applied Ergonomics, 75, 17-26.
  • [4] Eurostat. (2020). Web site: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Accidents_at_work_statistics_by_economic_ activity#Analysis_by_injured_body_part (accessed 10 October 2020).
  • [5] Li, D. X. (2020). Cut protective textiles. The textile institute book series. Elsevier.
  • [6] Dianat, I., Haslegrave, C., Stedmon, A. (2012). Methodology for evaluating gloves in relation to the effects on hand performance capabilities: A literature review. Ergonomics, 55(11), 1429-1451.
  • [7] Dianat, I., Haslegrave, C. M., Stedmon, A. W. (2014). Design options for improving protective gloves for industrial assembly work. Applied Ergonomics, 45(4), 1208-1217.
  • [8] Rebouillat, S., Steffenino, B. (2006). High performance fibres and the mechanical attributes of cut resistant structures made therewith. Conference: High Performance Structures and Materials, WIT Transactions on the Built Environment, 85, 279-299.
  • [9] Harrabi, L., Dolez, P., Vu-Khanh, T. (2008). Evaluation of the flexibility of protective gloves. International Journal of Occupational Safety and Ergonomics (JOSE), 14(1), 61-68.
  • [10] Roda-Sales, A., Sancho-Bru, J. L., Vergara, M. Gracia-Ibáñez, V., Jarque-Bou, N. J. (2020). Effect on manual skills of wearing instrumented gloves during manipulation. Journal of Biomechanics, 98, 109512.
  • [11] Yoo, I.-G., Lee, J., Jung, M.-Y., Lee, J.-H. (2011). Effects of wearing the wrong glove size on shoulder and forearm muscle activities during simulated assembly work. Industrial Health, 49(5), 575-581.
  • [12] Irzmańska, E., Stefko, A. (2012). Comparative evaluation of test methods for cut resistance of protective gloves according to polish standards. Fibres and Textiles in Eastern Europe, 5(94), 99-103.
  • [13] Regulation (EU) 2016/425 of the European Parliament and of the council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC; 2016.
  • [14] EN 388:2016+A1:2018. (2018). Protective gloves against mechanical risks.
  • [15] EN ISO 13997:1999. (1999). Protective clothing – Mechanical properties- Determination of resistance to cutting by sharp objects.
  • [16] Lara, J., Massé, S. (2020). Evaluating the cutting resistance of protective clothing materials. Proceedings of the 1st European Conference on Protective Clothing (ECPC) and NOKOBETEF 6 “Ergonomics for Protective Clothing”, Sweden.
  • [17] Lara, J., Vu Thi, B. N., Vu-Khanh, T. (2003). Effects of friction on cut resistance of protective materials. Proceedings of the Second European Conference on Protective Clothing (ECPC) and NOKOBETEF 7 “Challenges for Protective Clothing”, Switzerland.
  • [18] Lara, J. (2007). Need for reliable reference materials – Standard cut test method 13997 as an example. Proceedings of the 8th European Seminar on Personal Protective Equipment, Finland.
  • [19] Capdevila, F. X., Carrera-Gallissa, E., Escusa, M, Rotela, M. (2020). Canonical analysis of the Kawabata and sliding fabric friction measurement methods. Journal of the Textile Institute, 111(6), 890-896.
  • [20] Chassagne, F., Benoist, E., Badel, P. (2020). Characterization of fabric-to-fabric friction: Application to medical compression bandages. AUTEX Research Journal, 20(2), 220-227.
  • [21] Bertaux, E., Lewandowski, M., Derler, S. (2007). Relationship between friction and tactile properties for woven and knitted fabrics. Textile Research Journal, 77(6), 387-396.
  • [22] Wasilewski, T., Żuchowski, J., Ogorzałek, M., et al. (2014). Tribological tests as a new method for quality assessment of fabric softeners. Scientific Journal of Gdynia Maritime University, 86, 269-275 (in polish).
  • [23] Lurie-Luke, E. (2014). Product and technology innovation: What can biomimicry inspire. Biotechnology Advances, 32, 1494-1505.
  • [24] Nachtigall, W. (2002). Biologisches design: Systematischer Katalog für bionisches Gestalten. Springer Verlag.
  • [25] Nachtigall, W. (2010). Bionik als Wissenschaft: Erkennen – Abstrahieren. Springer Verlag.
  • [26] Blok, V., Gremmen, B. (2016). Ecological Innovation: Biomimicry as a new way of thinking and acting ecologically. Journal of Agricultural Environmental Ethics, 29, 203-217.
  • [27] Bhushan, B. (2009). Biomimetics: Lessons from nature – An overview. Philosophical Transactions of Royal Society A, 367, 1445-1486.
  • [28] Fan, Z., Lu, G., Liu, K. (2013). Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Engineering Structures, 55(Supplement C), 80-89.
  • [29] Zheng, B., Zhang, K., Yang, B., Liu, J. (2019). Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures. International Journal of Impact Engineering, 126, 160-171.
  • [30] EN 1082-1:1996. (1996). Protective clothing. Gloves and arm guards protecting against cuts and stabs by hand knives Chain mail gloves and arm guards.
  • [31] Rebouillat, S., Steffenino, B., Miret-Casas, A. (2010). Aramid, steel, and glass: Characterization via cut performance testing, of composite knitted fabrics and their constituent yarns, with a review of the art. Journal of Materials Science 45(19), 5378-5392.
  • [32] Mayo, J. B., Wetzel, E. D. (2014). Cut resistance and failure of high-performance single fibers. Textile Research Journal, 84(12), 1233-1246.
  • [33] Shin, H. S., Erlich, D. C., Shockey, D. A. (2003). Test for measuring cut resistance of yarns. Journal of Materials Science, 38, 3603-3610.
  • [34] Knoff, W. (2001). The effect of moisture and heat treatment on the lateral compressive properties of PPTA fibres. Proceedings of the 30th Textile Research Symposium, Shizuoka, Japan, 45-53.
  • [35] Vu Thi, B. N., Vu-Khanh, T., Lara, J. (2005). Effect of friction on cut resistance of polymers. Journal of Thermoplastic Composite Materials, 18(1), 23-35.
  • [36] Barker, R., Ross, K. Andrews, J., Deaton, A. S. (2017). Comparative studies on standard and new test methods for evaluating the effects of structural firefighting gloves on hand dexterity. Textile Research Journal, 87(3), 270-284.
  • [37] Vu Thi, B. N., Vu-Khanh, T., Lara, J. (2009). Mechanics and mechanism of cut resistance of protective materials. Theoretical and Applied Fracture Mechanics, 52, 7-13.
  • [38] Abbasi, M., Reddy, S., Ghafari-Nazari, A., Fard, M. (2015). Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members. Thin-Walled Structures, 89, 31-41.
  • [39] Liu, W., Lin, Z., Wang, N., Deng, X. (2016). Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact. Thin-Walled Structures, 100(Supplement C), 25-37.
  • [40] Rong, Y., Liu, J., Luo, W., He, W. (2018). Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels.Composite Part B: Engineering, 152, 324-335.
  • [41] Shen, J., Lu, G., Ruan, D. (2010). Compressive behaviour of closed-cell aluminium foams at high strain rates. Composites Part B Engineering, 41(8), 678-685.
  • [42] Lu, G., Shen, J., Hou, W., Ruan, D., Ong, L. S. (2008). Dynamic indentation and penetration of aluminium foams. International Journal of Mechanical Sciences, 50(5), 932-943.
  • [43] Martini, R, Barthelat, F. (2016). Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales. Bioinspiration & Biomimetics, 11, 066001.
  • [44] Meyers, A., Lin, Y. S., Olevsky, E. A., Chen, P.-Y. (2012). Battle in the Amazon: Arapaima versus Piranha. Advanced Engineering Materials, 14(5), 279-288.
  • [45] Moreland, J. (2010). Production and characterization of aramid copolymer fibers for use in cut protection, Clemson University.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c002f79-05ab-4f27-9825-cd34f8598e8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.