PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cavitation Erosion Resistance of High-Alloyed Fe-Based Weld Hardfacings Deposited Via SMAW method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Odporność na erozję kawitacyjną wysokostopowych twardych powłok napawanych na osnowie żelaza wytworzonych metodą SMAW
Języki publikacji
EN
Abstrakty
EN
In order to investigate the cavitation erosion (CE) resistance of high-alloyed ferrous hardfacings, the three different deposits were pad welded by the shielded metal arc welding (SMAW) method. Consumable electrodes differed in the content of carbide-forming elements, and pad welds were deposited onto the S235JR structural. The CE tests, conducted according to ASTM G32 standard, indicated that hardfacings reveal lower mass loss than the reference stainless steel AISI 304 (X5CrNi18-10). The hardfacings show increasing resistance to CE in the following order: Cr-C < Cr-C-Mo < Cr-C-Mo-V-W. The reference steel revealed more than twenty times higher material loss in the CE test than Cr-C-Mo-V-W hardfacing, which had outstanding hardness (825HV0.3). The profilometric measurements and scanning electron microscopy investigations showed large changes in valley and peak sizes of the roughness profiles for materials which displayed high erosion rates. The erosion mechanism of the coatings can be classified as brittle-ductile and relies on cracking, chunk removal of material, pits and craters formation, and deformation of fractured material tips and edges. Hardfacing materials failed primarily due to brittle fractures with different severities. Specimen surface degradation follows the changes in Ra, Rz, Rv, and Rp roughness parameters and well-corresponds to the proposed roughness rate (RR) parameter.
PL
W celu zbadania odporności na erozję kawitacyjną (EK) wysokostopowych napoin na osnowie żelaza napawano trzema materiałami metodą SMAW. Elektrody otulone różniły się zawartością pierwiastków węglikotwórczych. Napoiny wykonano na stali konstrukcyjnej S235JR. Testy EK, przeprowadzone zgodnie z normą ASTM G32, wykazały niższy ubytek masy napoin w porównaniu do referencyjnej stali odpornej na korozję AISI 304 (X5CrNi18-10). Napoiny wykazują rosnącą odporność na EK w następującej kolejności: Cr-C < Cr-C-Mo < Cr-C-Mo-V-W. Referencyjna próbka stalowa wykazała w teście EK ponad dwudziestokrotnie większy ubytek materiału niż napoina Cr-C-Mo-V-W, która miała wyjątkowo wysoką twardość (825HV0.3). Pomiary profilometryczne i badania przeprowadzone przy użyciu skaningowego mikroskopu elektronowego wykazały duże zmiany wielkości dolin i szczytów profilu chropowatości dla materiałów wykazujących wysoką szybkość erozji. Mechanizm EK powłok można sklasyfikować jako krucho-plastyczny i opiera się na pękaniu, usuwaniu kawałków materiału, tworzeniu wgłębień i kraterów oraz deformacji pękniętych fragmentów kraterów oraz deformacji wyodrębnionych szczytów i krawędzi materiału. Napawany materiał podlega niszczeniu przez jego pękanie w różnym nasileniu. Degradacja powierzchni próbek pogłębia się wraz ze zmianą parametrów chropowatości Ra, Rz, Rv i Rp i dobrze koresponduje z proponowanym parametrem RR (zmiana chropowatości pow. degradowanej).
Czasopismo
Rocznik
Tom
Strony
85--94
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, 20-618 Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, 20-618 Lublin, Poland
Bibliografia
  • 1. Hejwowski T.: Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne (Modern wear and erosion resistant thermally deposited coatings). Lublin, Poland: Politechnika Lubelska (Lublin University of Technology), 2013.
  • 2. Kim J.-H., Lee M.-H.: A Study on Cavitation Erosion and Corrosion Behavior of Al-, Zn-, Cu-, and Fe-Based Coatings Prepared by Arc Spraying. J Therm Spray Tech 2010, 19, pp. 1224–30, https://doi.org/10.1007/s11666-010-9521-0.
  • 3. Matikainen V., Koivuluoto H., Vuoristo P.: A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance. Wear 2020, 446–447, p. 203188, https://doi.org/10.1016/j.wear.2020.203188.
  • 4. Szala M., Walczak M., Łatka L., Gancarczyk K., Özkan D.: Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying. Advances in Materials Science 2020, 20, pp. 26–38, https://doi.org/10.2478/adms-2020-0008.
  • 5. Ding X., Ke D., Yuan C., Ding Z., Cheng X.: Microstructure and Cavitation Erosion Resistance of HVOF Deposited WC-Co Coatings with Different Sized WC. Coatings 2018, 8, p. 307, https://doi.org/10.3390/coatings8090307.
  • 6. Lamana M.S., Pukasiewicz A.G.M., Sampath S.: Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings. Wear 2018, 398–399 pp. 209–19, https://doi.org/10.1016/j.wear.2017.12.009.
  • 7. Liu J., Bai X., Chen T., Yuan C.: Effects of Cobalt Content on the Microstructure, Mechanical Properties and Cavitation Erosion Resistance of HVOF Sprayed Coatings. Coatings 2019, 9, p. 534, https://doi.org/10.3390/coatings9090534.
  • 8. Jonda E., Szala M., Sroka M., Łatka L., Walczak M.: Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Applied Surface Science 2023, 608, p. 155071, https://doi.org/10.1016/j.apsusc.2022.155071.
  • 9. Oliveira D.B., Franco A.R., Bozzi A.C.: Influence of low temperature plasma carbonitriding on cavitation erosion resistance of the Stellite 250 alloy – A preliminary evaluation. Wear 2021, p. 203653, https://doi.org/10.1016/j.wear.2021.203653.
  • 10. Szala M., Chocyk D., Skic A., Kamiński M., Macek W., Turek M.: Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6. Materials 2021, 14, p. 2324, https://doi.org/10.3390/ma14092324.
  • 11. Krella A., Marchewicz A.: Effect of mechanical properties of CrN/CrCN coatings and uncoated 1.402 stainless steel on the evolution of degradation and surface roughness in cavitation erosion. Tribology International 2023, 177, https://doi.org/10.1016/j.triboint.2022.107991.
  • 12. Díaz V.V., Dutra J.C., Buschinelli A.J. de A, D’Oliveira A.S.C.: Cavitation erosion resistance of deposits processed by plasma transferred arc welding. Welding International 2009, 23, pp. 159–65, https://doi.org/10.1080/09507110802543286.
  • 13. Hattori S., Mikami N.: Cavitation erosion resistance of stellite alloy weld overlays. Wear 2009, 267, pp. 1954–60, https://doi.org/10.1016/j.wear.2009.05.007.
  • 14. Will C.R., Capra A.R., Pukasiewicz A.G.M., Chandelier J. da G., Paredes R.S.C.: Comparative study of three austenitic alloy with cobalt resistant to cavitation deposited by plasma welding. Welding International 2012, 26, pp. 96–103, https://doi.org/10.1080/09507116.2010.527487.
  • 15. Zhao T., Zhang S., Wang Z.Y., Zhang C.H., Zhang D.X., Wang N.W., et al.: Cavitation erosion/corrosion synergy and wear behaviors of nickel-based alloy coatings on 304 stainless steel prepared by cold metal transfer. Wear 2022, 510–511, p. 204510, https://doi.org/10.1016/j.wear.2022.204510.
  • 16. Szala M., Walczak M., Hejwowski T.: Factors Influencing Cavitation Erosion of NiCrSiB Hardfacings Deposited by Oxy-Acetylene Powder Welding on Grey Cast Iron. Adv Sci Technol Res J 2021, 15, pp. 376–86, https://doi.org/10.12913/22998624/143304.
  • 17. Duraiselvam M., Galun R., Wesling V., Mordike B.L., Reiter R., Oligmüller J.: Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement. Surface and Coatings Technology 2006, 201, pp. 1289–95, https://doi.org/10.1016/j.surfcoat.2006.01.054.
  • 18. Szymański Ł., Olejnik E., Sobczak J.J., Szala M., Kurtyka P., Tokarski T., et al.: Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ in cast steel and gray cast iron. Journal of Materials Processing Technology 2022, 308, p. 17688, https://doi.org/10.1016/j.jmatprotec.2022.117688.
  • 19. Fedorov A.V., Rymkevich A.I., Bazhenov V.V., Zubchenko A.S., Davydova N.V.: Cavitation-resistant high-alloyed chromium steels. Welding International 2015, 29, pp. 894–900, https://doi.org/10.1080/09507116.2014.998432.
  • 20. ESAB Welding Handbook. Consumables for Manual and Automatic Welding Consumables for Hardfacing 2005, https://www.academia.edu/35539666/ESAB_WELDING_HANDBOOK (accessed October 31, 2022).
  • 21. ASTM G32-16 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus 2016, https://doi.org/10.1520/G0032-16.
  • 22. Szala M., Łatka L., Walczak M., Winnicki M.: Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass. Metals 2020, 10m p. 856, https://doi.org/10.3390/met10070856.
  • 23. Szala M.: Cavitation erosion phenomenological model of MCrAlY and NiCrMoNbTa metallic coatings deposited via the HVOF method. Tribologia 2021, 298 pp. 47–55, https://doi.org/10.5604/01.3001.0015.8368.
  • 24. Rakhit A.K.: Heat Treatment of Gears: A Practical Guide for Engineers. Materials Park, OH: ASM International, 2000.
  • 25. Drozd K., Walczak M., Szala M., Gancarczyk K.: Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades. Materials 2020, 13, p. 4895, https://doi.org/10.3390/ma13214895.
  • 26. Sawa M., Szala M., Henzler W.: Innovative device for tensile strength testing of welded joints: 3d modelling, FEM simulation and experimental validation of test rig – a case study. Applied Computer Science 2021, 17, pp. 92–105, https://doi.org/10.23743/acs-2021-24.
  • 27. Zheng Y., Wang F., Li C., Lin Y., Cao R.: Effect of Martensite Structure and Carbide Precipitates on Mechanical Properties of Cr-Mo Alloy Steel with Different Cooling Rate. High Temperature Materials and Processes 2019, 38, pp. 113–24, https://doi.org/10.1515/htmp-2018-0018.
  • 28. He X., Hu C., Wang Z., Zhao H., Wei X., Dong H.: Carbide transformation behaviors of a Cr–Mo–V secondary hardening steel during over-ageing. Mater Res Express 2020, 7, 036511, https://doi.org/10.1088/2053-1591/ab7c86.
  • 29. Fan C., Chen M.-C., Chang C.-M., Wu W.: Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys. Surface and Coatings Technology 2006, 201, pp. 908–12, https://doi.org/10.1016/j.surfcoat.2006.01.010.
  • 30. Hattori S., Ishikura R., Zhang Q.: Construction of database on cavitation erosion and analyses of carbon steel data. Wear 2004, 257, pp. 1022–9, https://doi.org/10.1016/j.wear.2004.07.002.
  • 31. Hattori S., Ishikura R.: Revision of cavitation erosion database and analysis of stainless steel data. Wear 2010, 268, pp. 109–16, https://doi.org/10.1016/j.wear.2009.07.005.
  • 32. Nowakowska M., Łatka L., Sokołowski P., Szala M., Toma F.-L., Walczak M.: Investigation into microstructure and mechanical properties effects on sliding wear and cavitation erosion of Al2O3–TiO2 coatings sprayed by APS, SPS and S-HVOF. Wear 2022, p. 204462, https://doi.org/10.1016/j.wear.2022.204462.
  • 33. Szala M., Walczak M., Świetlicki A.: Effect of Microstructure and Hardness on Cavitation Erosion and Dry Sliding Wear of HVOF Deposited CoNiCrAlY, NiCoCrAlY and NiCrMoNbTa Coatings. Materials 2022, 15, p. 93, https://doi.org/10.3390/ma15010093.
  • 34. Szala M., Chocyk D., Turek M.: Effect of manganese ion implantation on cavitation erosion resistance of HIPed Stellite 6. Acta Physica Polonica A 2022, 142, in print, https://doi.org/10.12693/.
  • 35. Krella A.K., Zakrzewska D.E., Marchewicz A.: The resistance of S235JR steel to cavitation erosion. Wear 2020, 452–453, p. 203295, https://doi.org/10.1016/j.wear.2020.203295.
  • 36. Santa J.F., Blanco J.A., Giraldo J.E., Toro A.: Cavitation erosion of martensitic and austenitic stainless steel welded coatings. Wear 2011, 271, pp. 1445–53, https://doi.org/10.1016/j.wear.2010.12.081.
  • 37. Szala M., Kamiński M., Łatka L., Nowakowska M.: Cavitation erosion and wet environment tribological behavior of Al2O3-13% TiO2 coatings deposited via different atmospheric plasma spraying parameters. Acta Physica Polonica A 2022, 142, in print, https://doi.org/10.12693/.
  • 38. Szala M., Dudek A., Maruszczyk A., Walczak M., Chmiel J., Kowal M.: Effect of atmospheric plasma sprayed TiO2-10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance. Acta Phys Pol A 2019, 136, pp. 335–41, https://doi.org/10.12693/APhysPolA.136.335.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bfc8cc1-6ce7-4c86-b902-c9659e316a22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.