PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Precyzyjne wykrywanie i segmentacja samolotów cywilnych na zdjęciach satelitarnych przy użyciu YOLOv8
Języki publikacji
EN
Abstrakty
EN
Detectionand segmentation of civilian aircraft from satellite imagery has significant importance in applications for air traffic management, surveillance, and defense. Yet, its visual confusions and lack of unification in recognition make it hard. This paper presents that by developing an efficient YOLOv8-based model for aircraft detection, classification, and segmentation within the FAIR1M-2.0 dataset. This proposed methodology involves dataset preprocessing and compatibility adjustments where the backbone used is CSPDarknet53 combining with the C2f module, which provides an efficient multi-scale representation, this happens to be the most critical requirement in distinguishing between among 11 unique categories of aircraft. Including the SAM model helps improve localization precision by achieving more accurate pixel-level segmentation. The present work effectively carried out an accurateclassification and described civilian aircraft, containing the enhanced detection and quantification capability appropriate for complex satellite-oriented aircraft analysis. These reasons make the work satisfy the fundamental requirement for very accurateidentification and evaluation of aerial images.The approach improves the accuracy and precision of aircraft classification over delicate satellite images, and thus is useful in operations for real-time surveillance and monitoring. Fine-grained classification and segmentation would then be able to effectively capture slight differences between aircraft types, which are now vital to the reliable management of airspaces. This work, therefore sets a good foundation for future development and advancement of high-resolution aerial analysis in diverse operational settings.
PL
Wykrywanie i segmentacja cywilnych samolotów na podstawie obrazów satelitarnych mają kluczowe znaczenie w zarządzaniu ruchem lotniczym, nadzorze oraz obronności. Ze względu na wizualne podobieństwa między różnymi typami samolotów oraz brak standaryzacji w rozpoznawaniu, jest to zadanie trudne. Niniejszy artykuł przedstawia efektywny model oparty na YOLOv8 do wykrywania, klasyfikacji i segmentacji samolotów w zbiorze danych FAIR1M-2.0. Zaproponowana metodologia obejmuje wstępne przetwarzanie danych i dostosowanie do zgodności, w którym wykorzystano CSPDarknet53 jako bazę, połączoną z modułem C2f, co zapewnia efektywną reprezentację wieloskalową–jest to kluczowy element przy rozróżnianiu 11 unikalnych kategorii samolotów. Włączenie modelu SAM poprawia precyzję lokalizacji, pozwalając na dokładniejszą segmentację na poziomie pikseli. Prezentowane badania pozwoliły na dokładną klasyfikację i opisanie cywilnych samolotów, zapewniając ulepszone możliwości wykrywania i analizowania obiektów na obrazach satelitarnych. Takie podejście znacznie zwiększa dokładność i precyzję klasyfikacji samolotów, co czyni je przydatnym w operacjach nadzoru i monitorowania w czasie rzeczywistym. Precyzyjna klasyfikacja i segmentacja umożliwia skuteczne rozróżnianie subtelnych różnic między typami samolotów, co jest istotne dla niezawodnego zarządzania przestrzenią powietrzną. Niniejsza praca stanowi solidną podstawę dlaprzyszłych badań nad analizą obrazów lotniczych w wysokiej rozdzielczości w różnych kontekstach operacyjnych.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 29 poz., fot., wykr.
Twórcy
  • VelagapudiRamakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
autor
  • VelagapudiRamakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
  • VelagapudiRamakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
Bibliografia
  • [1] Azam F., et al.: Aircraft classification based on PCA and feature fusion techniques in convolutional neural network. IEEE Access 9, 2021, 161683161694 [https://dx.doi.org/10.1109/ACCESS.2021.3132062].
  • [2] Castilho H. M., Nascimento C. L., Loesch Vianna W. O.: Aircraft bleed valve fault classification using support vector machines and classification trees. Annual IEEE International Systems Conference – SysCon. IEEE, 2018 [https://doi.org/10.1109/SYSCON.2018.8369568].
  • [3] C V A., P K.: Deep Learning-Based Instance Segmentation of Aircraft in Aerial Images using Detectron2, 2023 [https://dx.doi.org/10.2139/ssrn.4485468].
  • [4] Dӓstner K., et al.: Classification of military aircraft in real-time radar systems based on supervised machine learning with labelled ads-b data. Sensor Data Fusion: Trends, Solutions, Applications – SDF. IEEE, 2018 [https://dx.doi.org/10.1109/SDF.2018.8547077].
  • [5] Elhanashi A., et al.: TeleStroke: real-time stroke detection with federated learning and YOLOv8 on edge devices. Journal of Real-Time Image Processing 21(4), 2024, 121 [https://dx.doi.org/10.1007/s11554-024-01500-1].
  • [6] Gao K., et al.: Optimizing and evaluating swin transformer for aircraft classification: Analysis and generalizability of the mtarsi dataset. IEEE Access 10, 2022, 134427–134439 [https://doi.org/10.1109/ACCESS.2022.3231327].
  • [7] Guo Q., Wang H., Xu F.: Scattering enhanced attention pyramid network for aircraft detection in SAR images. IEEE Transactions on Geoscience and Remote Sensing 59(9), 2020, 7570–7587 [https://doi.org/10.1109/TGRS.2020.3027762].
  • [8] Guo Q., et al.: Aircraft target detection from spaceborne SAR image. IEEE International Geoscience and Remote Sensing Symposium – IGARSS 2019. IEEE, 2019 [https://doi.org/10.1109/IGARSS.2019.8898548].
  • [9] Hassan A., et al.: A deep learning framework for automatic airplane detection in remote sensing satellite images. IEEE Aerospace Conference. IEEE, 2019 [https://dx.doi.org/10.1109/AERO.2019.8741938].
  • [10] He C., et al.: A component-based multi-layer parallel network for airplane detection in SAR imagery. Remote Sensing 10(7), 2018, 1016 [https://doi.org/10.3390/rs10071016].
  • [11] Kang Y., et al.: SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images. IEEE Transactions on Geoscience and Remote Sensing 60, 2021, 1–17 [https://doi.org/10.1109/TGRS.2021.3130899].
  • [12] Kang Y., et al.: ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing 61, 2023, 1–17 [https://dx.doi.org/10.1109/TGRS.2023.3236987].
  • [13] Khan Z., et al.: Deep learning improved YOLOv8 algorithm: Real-time precise instance segmentation of crown region orchard canopies in natural environment. Computers and Electronics in Agriculture 224, 2024, 109168 [https://doi.org/10.1016/j.compag.2024.109168].
  • [14] Liu Z., Gao Y., Du Q.: Yolo-class: Detection and classification of aircraft targets in satellite remote sensing images based on yolo-extract. IEEE Access 11, 2023, 109179–109188 [https://doi.org/10.1109/ACCESS.2023.3321828].
  • [15] Nie Y., Bian C., Li L.: Adap-EMD: Adaptive EMD for aircraft fine-grained classification in remote sensing. IEEE Geoscience and Remote Sensing Letters 19, 2022, 1–5 [https://doi.org/10.1109/LGRS.2022.3168581].
  • [16] Pandey S., Chen K-F., Dam E. B.: Comprehensive multimodal segmentation in medical imaging: Combining YOLOv8 with SAM and HQ-SAM models. IEEE/CVF International Conference on Computer Vision. 2023 [https://dx.doi.org/10.1109/ICCVW60793.2023.00273].
  • [17] Poojitha K., Nasreen A.: Aircraft recognition system using deep learning based efficientnet. International Journal of Computer Science and Engineering 14(5), 2023, 182–187 [https://dx.doi.org/10.21817/indjcse/2023/v14i5/231405025].
  • [18] Sapkota R., Ahmed D., Karkee M.: Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments. Artificial Intelligence in Agriculture 13, 2024, 84–99 [https://doi.org/10.1016/j.aiia.2024.07.001].
  • [19] Sun X., et al.: FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing 184, 2022, 116–130 [https://doi.org/10.1016/j.isprsjprs.2021.12.004].
  • [20] Sun X., et al.: SCAN: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing 60, 2022, 1–17 [https://doi.org/10.1109/TGRS.2022.3166174].
  • [21] Thai V.-P., et al.: Detection, tracking and classification of aircraft and drones in digital towers using machine learning on motion patterns. Integrated Communications, Navigation and Surveillance Conference – ICNS. IEEE, 2019 [https://doi.org/10.1109/ICNSURV.2019.8735240].
  • [22] Wang J., et al.: Integrating weighted feature fusion and the spatial attention module with convolutional neural networks for automatic aircraft detection from SAR images. Remote Sensing 13(5), 2021, 910 [https://dx.doi.org/10.3390/rs13050910].
  • [23] Wang W., et al.: Aircraft target classification for conventional narrow-band radar with multi-wave gates sparse echo data. Remote Sensing 11(22), 2019, 2700 [https://dx.doi.org/10.3390/rs11222700].
  • [24] Wang X., et al.: Aircraft target interpretation based on SAR images. Applied Sciences 13(18), 2023, 10023 [https://doi.org/10.3390/app131810023].
  • [25] Wang X., et al.: SAR Image Aircraft Target Recognition Based on Improved YOLOv5. Applied Sciences 13(10), 2023, 6160 [https://doi.org/10.3390/app13106160].
  • [26] Yang T., et al.: An approach for plant leaf image segmentation based on YOLOV8 and the improved DEEPLABV3+. Plants 12(19), 2023, 3438 [https://doi.org/10.3390/plants12193438].
  • [27] Yue B., et al.: MS-Net: A Multi-modal Self-supervised Network for FineGrained Classification of Aircraft in SAR Images. arXiv preprint arXiv:2308.14613, 2023 [https://dx.doi.org/10.48550/arXiv.2308.14613].
  • [28] Zhao Q., Du X., Lu Y.: Aircraft target classification based on CNN. IEEE 11th Sensor Array and Multichannel Signal Processing Workshop – SAM. IEEE, 2020 [https://doi.org/10.1109/SAM48682.2020.9104254].
  • [29] Zhao Y., et al.: Pyramid attention dilated network for aircraft detection in SAR images. IEEE Geoscience and Remote Sensing Letters 18(4), 2020, 662–666 [https://doi.org/10.1109/LGRS.2020.2981255].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9beb7901-f8cd-49ed-ae33-da08e735cd9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.