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Abstract: The control problem with random horizon at finite
number of events is investigated in this paper, where the general aim
of control is the stabilization (in mean square sense) of linear system
at minimum cost. This problem is reduced to the task of optimal
control with established finite horizon. Moreover, the differences
between stabilization with fixed and random horizons are also given.
To illustrate those differences a numerical example is included.
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1. Introduction

The problem of optimal control for linear and non–linear systems has been
given a lot of much attention for a long time (see e.g., Aoki, 1967; Bellman,
1961; Feldbaum, 196); Fleming and Rishel, 1975; Zabczyk, 1996). For discrete
time systems, many problems (e.g. adaptive control, approximation, quadratic
control, stabilization, identification, active learning etc.) have been studied by
researchers during the past few years (see e.g. Banek and Koz lowski, 2005A,
2006; Bubnicki, 2000; Dong and Mei, 2009; Fleming and Rishel 1975; Harris
and Rishel, 1986; Kozin, 1972; Liptser and Shiryaev, 1978; Rishel, 1985; Rung-
galdier, 1998; Saridis, 1995). Each of the above tasks consists in optimization
of performance criterion for fixed finite or infinite time interval. A lot of results
have been presented for the established horizon, with solutions of the above tasks
obtained using the iterative technique (see, e.g., Bubnicki, 2000; Xu, 2011) or
dynamic programming with approximation (see, e.g., Aoki, 1967; Banek and
Koz lowski, 2006; Bellman, 1961; Chena, Edgarb and Manousiouthakisa, 2004;
Fleming and Rishel, 1975; Feldbaum, 1965; Zabczyk, 1996). The question arises
how to design the controller (control law) when the horizon of control is unknown
or random?
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The problems with random horizon are less noticeable in the literature of
the subject and they can be divided into two types. The first type is based
on classical optimal stopping of decision process (optimal stopping control, see
Benht and Reikvam, 2004; Boetius and Kohlmann, 1998; Karatzas and Shreve,
1984, 1985; Shiryaev, 1978), which is modeled by a Snell envelope construction
and stopping moment definition. We could also solve this problem by changing
stopping into control, which is designed by an auxiliary task (see Banek and
Koz lowski, 2005B). The second type is based on the assumption that the horizon
does not depend on the behavior of the system (the system state does not
influence the horizon). We obtain such a situation when we define the control
horizon as, e.g., the number of losses or number of requests. In such a case we
design the horizon by a random variable independent of state. The solving is
based on the construction of a substitute task, where the functionals of losses
and heredities are modified.

This paper presents a general stabilization problem of linear system, which
is controlled. This stabilization must be realized in a random horizon which is
independent of system state. The horizon of control is modeled by a random
variable. The problem mentioned is replaced by an auxiliary task of control with
finite horizon. In both cases the aim of control is the same but has different
forms. The above problem is adapted to linear systems.

The organization of article is as follows. Section 2 introduces the Lyapunov
stability. Section 3 presents task of optimal control with random horizon. Op-
timal controls of linear systems with quadratic criterion for deterministic and
random horizons are given in Sections 4 and 5, respectively. Basic results (op-
timal control for stabilization of linear systems) and an illustrative example are
provided in Section 6.

2. Stability

The common stability properties of stochastic systems that have been stud-
ied in the literature have generally been related to Lyapunov stability (see e.g.
Bolzern, Colaneri and Nikolao, 2008; Hoagg and Bernstein, 2007; Kozin, 1972).
Recognizing that stability in the Lyapunov sense is merely a uniform conver-
gence with respect to initial conditions, the various concepts of stability for
stochastic systems can be immediately defined by invoking one of usual models
of convergence of probability theory. This means convergence in probability,
convergence in the mean and almost sure convergence. Let yt ∈ Rn denote the
system state at time t (with initial state y0 ∈ Rn at time 0) and ‖y‖ denote a
norm, such as an absolute value or quadratic norm.

Definition 1 (Lyapunov Stability). The system is stable if for given ε > 0,
there exists δ (ε) > 0 such that for ‖y0‖ < δ, there is

sup
t≥t0

‖yt‖ < ε.
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Here, t0 is called stabilization time. For a deterministic system we can
calculate this time exactly.

Definition 2 (Asymptotic Lyapunov Stability). The system is asymptotically
stable, if it is stable and if there exists δ > 0 such that for ‖y0‖ < δ there is

lim
t→∞

‖yt‖ = 0.

Definition 3. The system is BIBO (Bounded-Input Bounded-Output) stable if
to any bounded input corresponds a bounded output.

It should be noted that BIBO stability is a ”weak” stability. It is sufficient to
consider the system, which for unit input signal (stroke, jump) responds with a
sinusoidal signal. Of course, this system is BIBO stable, but in Lyapunov sense
it is not. The stability, asymptotic stability, time stabilization can be extended
to stochastic case in a similar way. By analogy we define

Definition 4. A stochastic system is stable if for given ε > 0, there exists
δ (ε) > 0 such that for ‖y0‖ < δ, it follows that

sup
t≥τ

E ‖yt‖ < ε.

For a stochastic system the stabilization time τ depends on internal dynam-
ics, disturbances, knowledge of system parameters. Thus, we see that stabiliza-
tion time is a random variable.

Definition 5 (Mean Square Stability). The system is mean square stable (MSS)
if

lim
t→∞

E ‖yt‖
2

= 0

for any y0 ∈ Rn and ‖y0‖ < ∞.

3. Problem formulation

The stabilization problem of linear or non-linear systems has attracted the in-
terest of an increasing number of authors in the last years (see e.g. Abouzaid,
Achhab and Wertz, 2011; Bolzern, Colaneri and Nikolao, 2008; Dong and Mei,
2009; Hoagg and Bernstein, 2007; Phat and Nam, 2007; Tian and Xie, 2007).
The Lyapunov stability suffices for practical applications, and so there are a lot
of results for this stability. However, in some practical applications the behavior
of the system over fixed finite or random time intervals is important (see e.g.
Koz lowski, 2010, 2011; Liu and Sun, 2007).

Let us consider the stability problem of a linear system at random horizon.
In this task stabilization means MSS, and additionally we must stabilize the
linear system at minimum cost. The objective function determines total costs,
i.e. the sum of control costs and costs associated with instability of the system.
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This total cost is called composite costs function (CCF). Let (Ω,F , P ) be a com-
plete probability space. Suppose that w1, w2, ... are independent n-dimensional
random vectors on this space, with normal N(0, In) distribution, and let τ be a
random horizon with the same discrete distribution P (dτ). We assume that all
the above mentioned objects are stochastically independent and an initial state
‖y0‖ < ∞.

We will consider the stabilization problem via control for a stochastic linear
system with state equation

yi+1 = Ayi + Bξ − Cui + σwi+1 (1)

where i = 0, ..., N − 1, yi ∈ R
n, A ∈ R

n×n, B ∈ R
n×k, C ∈ R

n×l and σ ∈ R
n×n.

On (Ω,F , P ) we define a family of sub-σ-fields Fi = σ {yi : i = 0, 1, ..., j}. Below
we assume that the parameters of linear system ξ ∈ R

k are known, ‖A‖ < ∞,

‖B‖ ‖ξ‖ < ∞, ‖C‖ < ∞, ‖σ‖ < ∞, where ‖·‖ for matrices A,B,C, σ denotes a
matrix norm ‖A‖ = max

‖x‖≤1
‖Ax‖ (system (1) is BIBO stable). A Yj-measurable

vector uj ∈ R
l will be called a control action, and u = (u0, u1, ...) an admissible

control. The class of admissible controls is denoted by U . To specify the aim of
control, we introduce a cost of control at time i as uT

i Rui and a heredity function
yTτ Qyτ as losses associated with system instability. The random variable τ

represents the horizon of control and has discrete distribution P (τ = i) = pi,

where 0 ≤ pi ≤ 1 for i ≥ 0 and
N
∑

i=0

pi = 1. We assume that the system (1) is

controlled until random time τ and after this time the system remains in the
terminal state (yt = yτ for t ≥ τ). We put uT

−1Ru−1 = 0 or u−1 = col (0, 0, ..., 0)
and define the objective function as

J (u) = E

[

τ−1
∑

i=−1

uT
i Rui + yTτ Qyτ

]

. (2)

At any time 0 ≤ j < τ , which is not equal to horizon of control, we take control
uj , and at time τ we do not take control but only calculate the value of the
heredity function. If the linear system (1) can be stopped at time τ = 0, then
we calculate only the value of heredity function.

The main aim of optimal control is stabilization of system (1) at lowest cost,
which is the sum of control costs and stability losses. Then, the task is to find

inf
u∈U

J (u) (3)

and to determine a sequence of admissible control u∗ =
(

u∗
0, ..., u

∗
τ−1

)

for which
the infimum is attained.

Remark 1. For Q = I (identity matrix) we have the heredity functional as a
value of MSS.
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Remark 2. Without loss of generality the above mentioned problem can be
extended to the case when the vector ξ is unknown. This problem is called
adaptive optimal control problem and the design of optimal control must take
into account also the estimation of unknown parameters of linear system (1)
(see Liptser and Shiryaev, 1978).

4. Linear quadratic control

Let the linear system be described by state equation (1) and the quadratic
criterion with deterministic horizon N be

inf
u∈U

E

(

N−1
∑

i=0

[

uT
i Riui + yTi Qiyi

]

+ yTNQiyN

)

. (4)

The theorem below presents the optimal control of system (1) and the value
of the composite costs function. The solution of task (4) for linear system (1)
where Qi = 0 and B = 0 (matrix of zeros) can be found in Koz lowski (2010).

Theorem 1. Let

Ki = Qi + AT
(

Ki+1 −KT
i+1C

(

Ri + CTKi+1C
)−1

CTKi+1

)

A (5)

Li = AT

(

Li+1 + 2Ki+1Bξ −KT
i+1C

(

Ri + CTKi+1C
)−1

CT (2Ki+1Bξ + Li+1)
)

(6)

Mi = ξTBTKi+1Bξ + tr
(

σTKi+1σ
)

+ ξTBTLi+1 + Mi+1

−
1

4
(2Ki+1Bξ + Li+1)

T
C
(

Ri + CTKi+1C
)−1

CT (2Ki+1Bξ + Li+1)

(7)

for i = 0, 1, ..., N − 1 and KN = QN , LN = 0, MN = 0.
If det

(

Ri + CTKi+1C
)

6= 0 , then the optimal control is

u∗
i =

1

2

(

Ri + CTKi+1C
)−1

CT (2Ki+1 (Ayi + Bξ) + Li+1) (8)

and

inf
u∈U

E

{

N−1
∑

i=0

[

uT
i Riui + yTi Qiyi

]

+ yTNQNyN

}

= W0 (y0)

where

Wi (yi) = yTi Kiyi + yTi Li + Mi. (9)
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Proof. First we define the Bellman functions which are non-negative (they are
defined as a sum of quadratic forms). For the time N we have

WN (yN ) = yTNQNyN (10)

and

Wi (yi) = min
ui

E
{

uT
i Riui + yTi Qiyi + Wi+1 (yi+1)

∣

∣Fi

}

(11)

for j = 0, 1, ..., N − 1. The value of the Bellman function in step N is given by
(10) and in step N − 1 we have

WN−1 (yN−1) =

min
uN−1

E
{

uT
N−1RN−1uN−1 + yTN−1QN−1yN−1 + WN (yN )

∣

∣FN−1

}

= min
uN−1

{

uT
N−1

(

RN−1 + CTQNC
)

uN−1 − 2uT
N−1C

TQN (AyN−1 + Bξ)

+ (AyN−1 + Bξ)
T
QN (AyN−1 + Bξ) + yTN−1QN−1yN−1 + tr

(

σTQNσ
)

}

Thus, the optimal control is

u∗
N−1 =

(

RN−1 + CTQNC
)−1

CTQN (AyN−1 + Bξ)

and

WN−1 (yN−1) =

− (AyN−1 + Bξ)QT
NC

(

RN−1 + CTQNC
)−1

CTQN (AyN−1 + Bξ)

+yTN−1QN−1yN−1 + (AyN−1 + Bξ)
T
QN (AyN−1 + Bξ) + tr

(

σTQNσ
)

= yTN−1

(

QN−1 + ATQNA−ATQT
NC

(

RN−1 + CTQNC
)−1

CTQNA
)

yN−1

+2yTN−1

(

ATQN −ATQT
NC

(

RN−1 + CTQNC
)−1

CTQN

)

Bξ

+tr
(

σTQNσ
)

+ ξTBT
(

QN −QT
NC

(

RN−1 + CTQNC
)−1

CTQN

)

Bξ

= yTN−1KN−1yN−1 + yTN−1LN−1 + MN−1.

We assume that equations (5)–(7) and (9) are true for i + 1. From (11) and
using the properties of conditional expectation we have

Wi (yi) = min
ui

E
{

uT
i Riui + yTi Qiyi + Wi+1 (yi+1)

∣

∣Fi

}

= min
ui

{

uT
i

(

Ri + CTKi+1C
)

ui − uT
i C

T (2Ki+1 (Ayi + Bξ) + Li+1) + yTi Qiyi

+ (Ayi + Bξ)
T
Ki+1 (Ayi + Bξ) + (Ayi + Bξ)

T
Li+1 + tr

(

σTKi+1σ
)

+ Mi+1

}

.
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Thus, the optimal control is

u∗
i =

1

2

(

Ri + CTKi+1C
)−1

CT (2Ki+1 (Ayi + Bξ) + Li+1)

and finally

Wi (yi) =

yTi

(

Qi + ATKi+1A−ATKT
i+1C

(

Ri + CTKi+1C
)−1

CTKi+1A
)

yi

+yTi
(

ATLi+1 + 2ATKi+1Bξ
)

−

yTi

(

ATKT
i+1C

(

Ri + CTKi+1C
)−1

CT (2Ki+1Bξ + Li+1)
)

+ξTBTKi+1Bξ + tr
(

σTKi+1σ
)

+ ξTBTLi+1 + Mi+1

−
1

4
(2Ki+1Bξ + Li+1)

T
C
(

Ri + CTKi+1C
)−1

CT (2Ki+1Bξ + Li+1)

= yTi Kiyi + yTi Li + Mi

what finishes the proof.

5. Linear quadratic control problem with random horizon

at finite number of events

This section presents a transformation of the LQC problem (2) - (3) with ran-
dom horizon to a task with deterministic horizon. The obtained task is still the
LQC problem but has a modified objective function. Using the definitions of
conditional probability and conditional expectation the composite costs func-
tional (2) can be presented as

J (u) = E

[

τ−1
∑

i=−1

uT
i Rui + yTτ Qyτ

]

= E
(

yT0 Qy0
)

P (τ = 0) +

+ E
(

uT
0 Ru0 + yT1 Qy1

)

P (τ = 1) + ...+

+ E

(

N−1
∑

i=0

uT
i Rui + yTNQyN

)

P (τ = N)

= E





N−1
∑

i=0

uT
i Rui

N
∑

j=i+1

P (τ = j) +

N
∑

i=0

yTi QyiP (τ = i)





= E

[

N−1
∑

i=0

uT
i RuiP (τ > i) +

N
∑

i=0

yTi QyiP (τ = i)

]

.

Finally, the above mentioned functional can be presented as

J (u) = E

N
∑

j=0

(

uT
j Rjuj + yTj Qjyj

)

(12)
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where

Rj = P (τ > j)R and Qj = P (τ = j)Q (13)

for j = 0, 1, ..., N . From distribution of random horizon τ we see that P (τ > N) =
0 thus RN = [0] (matrix of zeroes). Therefore, we replace the task of optimal
control with random horizon at finite number of elementary events (3) by the
task of optimal control with finite horizon

inf
u∈U

E





N−1
∑

j=0

(

uT
j Rjuj + yTj Qjyj

)

+ yTNQNyN



 . (14)

The CCF value is the same but the design of optimal control for a task with
established horizon is easier. Below we consider the auxiliary (replacement) task
(14) to design the optimal control of system (1) with random horizon τ . From
Theorem 1 we have

Corollary 1. If det
(

Ri + CTKi+1C
)

6= 0 , then the optimal control of system
(1) is

u∗
i =

1

2

(

Ri + CTKi+1C
)−1

CT (2Ki+1 (Ayi + Bξ) + Li+1)

where KN = QN , LN = 0, MN = 0 and Ki, Li,Mi for i = 0, 1, ..., N − 1 are
given by (5)–(7), respectively, but Ri, Qi are given by (13).

6. Stabilization of a linear system

Let us consider the case, where the BIBO system (1) functions in random horizon
τ and the maim aim is stabilization. Thus, this system may be controlled
only at times 0, 1, ..., τ − 1 and must be stabilized at lowest cost. The cost of
control (energetic cost) in each step has a quadratic form uT

i Rui but from the

definition of stabilization (quadratic Lyapunov function) the value ‖yτ‖
2

must
be minimized. In case where horizon of control τ is random, the task

inf
u∈U

E

{

τ−1
∑

i=0

uT
i Rui + ‖yτ‖

2

}

(15)

is replaced by the one with deterministic horizon

inf
u∈U

E





N−1
∑

j=0

(

P (τ > j)uT
j Ruj + P (τ = j) ‖yj‖

2
)

+ P (τ = N) ‖yN‖2



 (16)

where P (τ = i) = pi, 0 ≤ pi ≤ 1 for i ≥ 0 and
N
∑

i=0

pi = 1.
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Theorem 2. Let Rj = P (τ > j)R, Qj = P (τ = j) I where I is an identity
matrix, the matrices Ki, Li, Mi for i = 0, 1, ..., N − 1 are given by (5) - (7)
and KN = P (τ = N) I, LN = 0, MN = 0. If ‖A‖ < ∞, ‖Bξ‖ < ∞, ‖C‖ <

∞, tr
(

σTσ
)

< ∞ and det
(

Ri + CTKi+1C
)

6= 0, then the optimal control to
stabilize system (1) is

u∗
i =

1

2

(

Ri + CTKi+1C
)−1

CT (2Ki+1 (Ayi + Bξ) + Li+1) . (17)

The value of the composite costs function is

inf
u∈U

E





N−1
∑

j=0

(

uT
j Rjuj + P (τ = j) ‖yj‖

2
)

+ P (τ = N) ‖yN‖
2





= yT0 K0y0 + yT0 L0 + M0. (18)

Proof. Results from direct application of Theorem 1.

Corollary 2. The above formulas can be used for the classical linear quadratic
control with established horizon. Let the system be described by (1) and the task
have the form

inf
u∈U

E

{

N−1
∑

i=0

uT
i Rui + ‖yN‖

2

}

. (19)

In this case we put P (τ = N) = 1 and P (τ = i) = 0 for i = 0, ..., N−1, then the
optimal control has the form (17), where Ri = R and Qi = [0] (matrix of zeros)
for i = 0, ..., N − 1, and KN = I (identity matrix). The value of performance
criterion is

inf
u∈U

E

{

N−1
∑

i=0

uT
i Rui + ‖yN‖2

}

= yT0 K0y0 + yT0 L0 + M0

where K0, L0,M0 are given by (5) - (7).

Corollary 3. Let the linear system be described by the state equation

yi+1 = yi − Cui + σwi+1 (20)

and the performance criterion with random horizon have the form (15), which we
decompose to auxiliary task (16), where Ri = P (τ > i)R and Qi = P (τ = i) I
for i = 0, 1, 2, ..., N . Using (17) and (5) - (7) we have: if det

(

Ri + CTGi+1C
)

6=
0 for i = 0, 1, ..., N − 1 then the optimal control of system (20) is

u∗
i =

[

Ri + CTKi+1C
]−1

CTKi+1yi

where

Ki = Qi +Ki+1−KT
i+1C

[

Ri + CTKi+1C
]−1

CTKi+1 and KN = P (τ = i) I



536 E. Koz lowski

and the value of performance criterion of auxiliary task (16) is

inf
u∈U

E

{

N−1
∑

i=0

[

uT
i Riui + P (τ = i) ‖yi‖

2
]

+ P (τ = N) ‖yN‖
2

}

= yT0 K0y0 +

N
∑

j=1

tr
(

σTKjσ
)

.

Remark 3. In present case the external stopping time of stabilization of linear
system (1) can be zero (τ = 0) (it is the case, where system is disturbed and can
not be stabilized). From the mathematical point of view this is correct, while the
theory of control says that if we stabilize we do act. In this case it is sufficient
to put P (τ = 0) = p0 = 0 which means that we surely undertake an action to
stabilize the system at time τ = 0.

Example 1. Let us stabilize a linear system with state equation (20) for random
and fixed time. Let us assume

R =

[

0.27 0.03
0.03 0.35

]

, C =

[

1.3 −0.2
−0.4 2.1

]

, σ =

[

1.2 −0.3
0.2 0.9

]

We must stabilize the system (20) , which is at an initial point y0 =

(

90
−36

)

. The random horizon has a Bernoulli distribution

P (τ = k) =

(

n

k

)

pk (1 − p)
n−k

for k = 0, 1, 2, ..., 10. The Bellman’s function Wj (yj) = yTj Kjyj+
10
∑

i=j+1

tr
(

σTKiσ
)

represents a CCF at time j. For p = 0.56 and p = 1 we have Table 1 presents
a possible trajectory of system states yj, optimal controls u∗

j and values of Bell-
man’s function. It can be seen that until possible time [Eτ ] we try to stabilize the
system, but after the moment [Eτ ] we suppress (level) external disturbances by
control (the symbol [] means the integer part). In case with random horizon the
control values are higher at the beginning and successively decrease in following
moments until time [Eτ ], whereas in case with fixed horizon the control values
are evenly distributed.

Fig. 1 shows dependencies between the composite costs function and prob-
ability of success p. We can see that with increasing p the expected horizon
of control is being extended and the energetic costs are more spread over time,
therefore we have lower costs during system stabilization.

Example 2. To uncover the additional differences between the control system
with random and deterministic horizons, we consider the problem of stability of
linear system (20) without cost of controls.
Thus, in case with random horizon the task has the form

inf
u∈U

E ‖yτ‖
2

(21)
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p = 0.56 p = 1
j Wj (yj) yj uj Wj (yj) yj uj

0 341.82 90 -36 18.36 -2.73 127.13 90 -36 6.75 -0.44

1 240.20 64.49 -23.12 16.84 -2.09 115.36 81.35 -32.85 6.76 -0.46

2 134.11 40.18 -13.01 15.58 -2.10 110.29 75.05 -30.36 6.99 -0.48

3 69.316 20.34 -2.60 9.65 0.23 97.15 65.77 -25.73 6.99 -0.43

4 16.17 7.63 -0.43 4.14 0.38 86.09 57.31 -22.29 7.09 -0.43

5 2.08 1.51 -0.33 0.88 -0.01 76.31 49.36 -19.69 7.28 -0.51

6 0.89 0.53 -0.62 0.31 -0.22 68.92 42.03 -16.43 7.69 -0.51

7 0.56 -1.19 0.32 -0.75 0.02 55.65 32.71 -12.13 7.88 -0.46

8 0.22 0.95 -0.94 0.59 -0.32 42.22 23.31 -7.71 8.23 -0.32

9 0.01 0.31 0.41 0.22 0.21 24.67 12.63 -2.69 8.33 0.16

10 0.01 1.31 0.84 0 0 1.08 0.99 -0.32 0 0

Table 1. The CCF, states and control values for random and fixed times.

which we reduce to the form

inf
u∈U

E





N
∑

j=0

P (τ = j) ‖yj‖
2



 . (22)

The optimal control is

u∗
i =

(

CTKi+1C
)−1

CTKi+1yi (23)

where KN = P (τ = N) I and

Ki = P (τ = i) I + Ki+1 −KT
i+1C

(

CTKi+1C
)−1

CTKi+1 (24)

for i = 0, 1, ..., N−1 and I is identity matrix. The value of performance criterion

(22) is yT0 K0y0 +
N
∑

j=1

tr
(

σTKjσ
)

.

In case with deterministic (fixed) horizon the task has the form

inf
u∈U

E ‖yN‖2 (25)

where the optimal control is also given by (23), where KN = I and

Ki = Ki+1 −KT
i+1C

(

CTKi+1C
)−1

CTKi+1 (26)

for i = 0, 1, ..., N−1 and I is identity matrix. The value of performance criterion

(25) is yT0 K0y0 +
N
∑

j=1

tr
(

σTKjσ
)

.

We see that the formulas, which determine the values of performance criterion
(22) and (25) and controls, are the same. The matrices Ki for the above task
are different!
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Figure 1. The relationship between CCF and probability p

Example 3. If yi, ui, wi, C, σ ∈ R, then for the case with deterministic horizon
of control from (26) we have K0 = K1 = ... = KN−1 = 0 and KN = 1, while
the optimal control is u0 = u1 = ... = uN−2 = 0, u∗

N−1 = yN−1

C
thus

inf
u∈U

E ‖yN‖2 = σ2.

Thus we see, that the system evolves freely (without controls) in steps 0, 1, ...N−2
, and we must take control at time N − 1 only.
In case with random horizon we act completely differently, from (24) we have
Ki = P (τ = i) and u∗

i = yi

C
for i = 0, 1, ..., N − 1. For one-dimensional case we

see that control does not depend on distribution of control horizon. The value
of performance criterion is

inf
u∈U

E





N
∑

j=0

P (τ = j) ‖yj‖
2



 = P (τ = 0) ‖y0‖
2

+ σ2

N
∑

j=1

P (τ = j)

= σ2 + P (τ = 0)
(

‖y0‖
2
− σ2

)

.

Remark 4. The one-dimensional case for system (20) showed the significant
differences of control. For a fixed horizon we take control only in the penultimate
step N − 1, the system evolves freely until time N − 2. For a random horizon
we take control from time 0 until time τ − 1 (all the time we must stabilize
the system; we are aiming at a target, wich is the origin of coordinates). The
control at time 0 depends on the initial state y0, while the controls in subsequent
moments depend on system states and eliminate external disturbances.
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7. Conclusion

In this article, the stabilization problem of stochastic discrete-time linear system
for random horizon via control was presented. The random horizon was mod-
eled by a random variable at finite number of elementary events. The described
problem was reduced to optimal control task with finite horizon. The aims of
control for primary and substitute tasks are the same. Solution of auxiliary task
gives the optimal control laws to stabilize the linear system. Additionally, a sim-
ple example shows that the optimal controls for stochastic system stabilization
in random and fixed time intervals are different. Thus, to design stabilization of
a linear system for random time we cannot directly refer to the task with estab-
lished horizon, we must necessarily modify the composite costs function. The
considered stochastic system has known parameters, but the obtained results
could be extended to the task of stabilizing a system with unknown parameters.

The extension of the described problem can be used, for example, to system
identification, image recognition, perfect tracking etc. in random time interval.

References

AOKI, M. (1967) Optimization of Stochastic Systems. Academic Press.
ABOUZAID, B., ACHHAB, M.E. and WERTZ, V. (2011) Feedback stabiliza-

tion of infinite-dimensional linear systems with constraints on control and
its rate. European Journal of Control 17 (2), 183-190.

BANEK, T. and KOZ LOWSKI, E. (2006) Adaptive control of system entropy.
Control and Cybernetics 35 (2), 279-289.

BANEK, T. and KOZ LOWSKI, E. (2005) Active and passive learning in con-
trol processes application of the entropy concept. Systems Sciences 31
(2), 29-44.

BANEK, T. and KOZ LOWSKI, E. (2005) Adaptive control with random hori-
zon. Annales Informatica 3, 5-14.

BELLMAN, R. (1961) Adaptive Control Processes. Princeton.
BENHT, F.E. and REIKVAM, K. (2004) A connection between singular stochas-

tic control and optimal stopping. Applied Mathematics and Optimization
49 (1), 27-41.

BOETIUS, F. and KOHLMANN, M. (1998) Connections between optimal
stopping and singular stochastic control. Stochastic Processes and their
Applications 77 (2), 253-281.

BOLZERN, P., COLANERI, P. and DE NIKOLAO, G. (2008) Almost sure
stability of stochastic linear systems with ergodic parameters. European
Journal of Control 14 (2), 114-123.

BUBNICKI, Z. (2000) General approach to stability and stabilization for a
class of uncertain discrete non-linear systems. International Journal of
Control 73 (14), 1298-1306.

CHENA, Y., EDGARB,T. and MANOUSIOUTHAKISA, V. (2004) On infinite-
time nonlinear quadratic optimal control. Systems and Control Letters 51



540 E. Koz lowski

(3-4), 259 - 268.
DONG, Y. and MEI, S. (2009) Global asymptotic stabilization of non-linear

systems. International Journal of Control 82 (2), 279-286.
FLEMING, W. H. and RISHEL, R. (1975) Deterministic and Stochatic Opti-

mal Control. Springer-Verlag, Berlin.
FELDBAUM, A.A. (1965) Optimal Control Systems. Academic Press.
HARRIS, L. and RISHEL, R. (1986) An algorithm for a solution of a stochastic

adaptive linear quadratic optimal control problem. IEEE Transactions on
Automatic Control 31 (12), 1165-1170.

HOAGG, J.B. and BERNSTEIN, D.S. (2007) Lapunov-stable adaptive sta-
bilization of non-linear time-varying systems with matched uncertainty.
International Journal of Control 80 (6), 872-884.

KARATZAS, I. and SHREVE, S.E. (1984) Connections between optimal stop-
ping and singular control I. Monotone follower problems. SIAM Journal
of Control Optimization 22 (6), 856-877.

KARATZAS, I. and SHREVE, S.E. (1985) Connections between optimal stop-
ping and singular control II. Reflected follower problems. SIAM Journal
of Control Optimization 23 (3), 433-451

KOZIN, F. (1972) Stability of stochastic dynamical systems. Lecture Notes in
Mathematics 294 , 186-229.

KOZ LOWSKI, E. (2010) The linear quadratic stochastic optimal control prob-
lem with random horizon at finite number of events intependent of state
system. Systems Science 36 (3), 5-11.

KOZ LOWSKI, E. (2011) Identification of linear system in random time. Inter-
national Journal of Computer and Information Technology 1 (2), 103-108.

LIPTSER, R.SH. and SHIRYAEV, A.N. (1978) Statistics of Stochastic Pro-
cesses. Springer-Verlag, New York.

LIU, L. and SUN, J. (2007) Finite-time stabilization of linear systems via
impulsive control. International Journal of Control 81 (6 ), 905-909.

PHAT, V.N. and NAM, P.T. (2007) Expotential stability and stabilization
of uncertain linear time-varying systems using parameter dependent La-
punov function. International Journal of Control 80 (8), 1333-1341.

RISHEL, R. (1985) A nonlinear discrete time stochastic adaptive control prob-
lem. Theory and applications of nonlinear control systems, Sel. Pap. 7th
Int. Symp. Math. Theory Networks Systems, 585-592.

RUNGGALDIER, W.J. (1998) Concepts and methods for discrete and con-
tinuous time control under uncertainty. Insurance Mathematics and Eco-
nomics 22 (1), 25-39.

SARIDIS, G. N. (1995) Stochastic Processes, Estimation and Control: The
Entropy Approach. John Wiley & Sons.

SHIRYAEV, A.N. (1978) Statistical Analysis of Sequential Processes. Optimal
Stopping Rules. Springer-Verlag, New York.

TIAN, J. and XIE, X.J. (2007) Adaptive state-feedback stabilization for high-
order stochastic non-linear systems with uncertain control coefficients. In-
ternational Journal of Control 80 (9), 1503-1516.



Stabilization of linear systems in random horizon via control 541

XU, J. X. (2011) A survey on iterative learning control for nonlinear systems.
International Journal of Control 84 (7), 1275-1294.

ZABCZYK, J. (1996) Chance and Decision. Scuola Normale Superiore, Pisa.


