PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low cost soft robotic gloves for at-home rehabilitation and daily living activities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stroke is one of the major reasons which affect the human hand functionality and lead to disability. Different repetitive exercises are used to regain the hand functionality which involves robotic exoskeleton. Soft pneumatic actuators are one of the good alternatives to rigid and fixed exoskeletons for rehabilitation. This paper presents soft robotic gloves fabricated with two different lowcost silicones which can be used in daily living activities and rehabilitation purpose. Soft robotic gloves are light weight and compact. These robotic gloves utilize the pneumatic pressure to flex and extend the human hand. Soft robotic gloves were tested on a healthy object for grasping and rehabilitation ability. Results showed that robotic glove was able to grasping and do the Kapandji test. This work presents an important step toward low cost efficient soft robotic devices for rehabilitation of stroke patients.
Twórcy
autor
  • Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Thailand
  • Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Thailand
Bibliografia
  • [1] S. L. Crichton, B. D. Bray, C. McKevitt, A. G. Rudd, and C. D. A. Wolfe, “Patient outcomes up to 15 years after stroke: survival, disability, quality of life, cognition and mental health”, Journal of Neurology, Neurosurgery, and Psychiatry, vol. 87, no. 10, 2016, 1091–1098 DOI: 10.1136/jnnp-2016-313361.
  • [2] C. Ellis, G. Magwood, and B. M. White, “Racial Differences in Patient-Reported Post-Stroke Disability in Older Adults”, Geriatrics, vol. 2, no. 2, 2017 DOI: 10.3390/geriatrics2020016.
  • [3] A. K. Kamal, A. Itrat, M. Murtaza, M. Khan, A. Rasheed, A. Ali, A. Akber, Z. Akber, N. Iqbal, S. Shoukat, F. Majeed, and D. Saleheen, “The burden of stroke and transient ischemic attack in Pakistan: a community-based prevalence study”, BMC Neurology, vol. 9, no. 1, 2009 DOI: 10.1186/1471-2377-9-58.
  • [4] N. C. Suwanwela, “Stroke Epidemiology in Thailand”, Journal of Stroke, vol. 16, no. 1, 2014, 1–7 DOI: 10.5853/jos.2014.16.1.1.
  • [5] A. G. Thrift, T. Thayabaranathan, G. Howard, V. J. Howard, P. M. Rothwell, V. L. Feigin, B. Norrving, G. A. Donnan, and D. A. Cadilhac, “Global Stroke Statistics”, International Journal of Stroke, vol. 12, no. 1, 2017, 13–32 DOI: 10.1177/1747493016676285.
  • [6] J. P. Bettger, L. Thomas, L. Liang, Y. Xian, C. D. Bushnell, J. L. Saver, G. C. Fonarow, and E. D. Peterson, “Hospital Variation in Functional Recovery After Stroke”, Circulation. Cardiovascular Quality and Outcomes, vol. 10, no. 1, 2017 DOI: 10.1161/CIRCOUTCOMES.115.002391.
  • [7] J. S. Knutson, M. Y. Harley, T. Z. Hisel, and J. Chae, “Improving Hand Function in Stroke Survivors: A Pilot Study of Contralaterally Controlled Functional Electric Stimulation in Chronic Hemiplegia”, Archives of Physical Medicine and Rehabilitation, vol. 88, no. 4, 2007, 513–520 DOI: 10.1016/j.apmr.2007.01.003.
  • [8] J. A. Franck, R. J. E. M. Smeets, and H. A. M. Seelen, “Changes in arm-hand function and arm-hand skill performance in patients after stroke during and after rehabilitation”, PloS One, vol. 12, no. 6, 2017 DOI: 10.1371/journal. pone.0179453.
  • [9] Y. J. Kang, H. K. Park, H. J. Kim, T. Lim, J. Ku, S. Cho, S. I. Kim, and E. S. Park, “Upper extremity rehabilitation of stroke: Facilitation of corticospinal excitability using virtual mirror paradigm”, Journal of NeuroEngineering and Rehabilitation,v. 9, no. 1, 2012DOI: 10.1186/1743-0003-9-71.
  • [10] B. H. Dobkin and A. Dorsch, “New evidence fortherapies in stroke rehabilitation”, Current Artherosclerosis Reports, vol. 15, no. 6, 2013, 331 DOI: 10.1007/s11883-013-0331-y.
  • [11] A. Rahman and A. Al-Jumaily, “Design and Development of a Bilateral Therapeutic Hand Device for Stroke Rehabilitation”, International Journal of Advanced Robotic Systems, vol. 10, no. 12, 2013DOI: 10.5772/56809.
  • [12] P. Sale, V. Lombardi, and M. Franceschini, “Hand Robotics Rehabilitation: Feasibility and Preliminary Results of a Robotic Treatment in Patients with Hemiparesis”, Stroke Research and Treatment, 2012 DOI: 10.1155/2012/820931.
  • [13] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. Van der Loos, “Robot-assisted movement training compared with conventional therapy ,techniques for the rehabilitation of upper-limb ,motor function after stroke”, Archives of Physical ,Medicine and Rehabilitation, vol. 83, no. 7, 2002, 52–959 DOI: 10.1053/apmr.2001.33101.
  • [14] C.-L. Yang, K.-C. Lin, H.-C. Chen, C.-Y. Wu, and C.- L. Chen, “Pilot comparative study of unilateral and bilateral robot-assisted training on upperextremity performance in patients with stroke”, The American Journal of Occupational Therapy, vol. 66, no. 2, 2012, 198– 206 DOI: 10.5014/ajot.2012.003103.
  • [15] V. S. Huang and J. W. Krakauer, “Robotic neurorehabilitation: A computational motor learning perspective”, Journal of NeuroEngineering and Rehabilitation, vol. 6, no. 1, 2009 ,DOI: 10.1186/1743-0003-6-5.
  • [16] G. B. Prange, M. J. A. Jannink, C. G. M. Groothuis-Oudshoorn, H. J. Hermens, and M. J. Ijzerman, “Systematic review of the effect of ,robot-aided therapy on recovery of the hemiparetic arm after stroke”, Journal of Rehabilitation Research and Development, vol. 43, no. 2, 2006, 171–184.
  • [17] N. Friedman, V. Chan, A. N. Reinkensmeyer, A. Beroukhim, G. J. Zambrano, M. Bachman, and ,D. J. Reinkensmeyer, “Retraining and assessing ,hand movement after stroke using the MusicGlove: Comparison with conventional hand ,therapy and isometric grip training”, Journal of NeuroEngineering and Rehabilitation, vol. 11, 2014 DOI: 10.1186/1743-0003-11-76.
  • [18] J. Stein, H. I. Krebs, W. R. Frontera, S. E. Fasoli, R. Hughes, and N. Hogan, “Comparison of TwoTechniques of Robot-Aided Upper Limb Exercise Training After Stroke”, American Journal of Physical Medicine & Rehabilitation, vol. 83, no. 9, 2004, 720–728 DOI: 10.1097/01.PHM.0000137313.14480.CE.
  • [19] N. Norouzi-Gheidari, P. S. Archambault, and J. Fung, “Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature”, Journal of Rehabilitation Research and Development,vol. 49, no. 4, 2012, 479–496.
  • [20] C. D. Takahashi, L. Der-Yeghiaian, V. Le, R. R. Motiwala, and S. C. Cramer, “Robot-based hand motor therapy after stroke”, Brain, vol. 131, no. 2, 2008, 425–437 DOI: 10.1093/brain/awm311.
  • [21] R. A. Bos, C. J. Haarman, T. Stortelder, K. Nizamis, J. L. Herder, A. H. Stienen, and D. H. Plettenburg, ,“A structured overview of trends and technologies used in dynamic hand orthoses”, Journal of ,NeuroEngineering and Rehabilitation, vol. 13, no. 1, 2016 DOI: 10.1186/s12984-016-0168-z.
  • [22] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, “A survey on robotic devices for upper limb rehabilitation”, Journal of NeuroEngineering and Rehabilitation, vol. 11, no. 1, 2014 DOI: 10.1186/1743-0003-11-3.
  • [23] M. Bouzit, G. Burdea, G. Popescu, and R. Boian, “The Rutgers Master II-new design forcefeedback glove”, IEEE/ASME Transactions on Mechatronics, vol. 7, no. 2, 2002, 256–263 ,DOI: 10.1109/TMECH.2002.1011262.
  • [24] M. Chen, S. Ho, H. F. Zhou, P. M. Pang, X. Hu, D. Ng,and K. Y. Tong, “Interactive rehabilitation robot for hand function training”. In: 2009 IEEE International Conference on Rehabilitation Robotics, 2009, 777–780 ,DOI: 10.1109/ICORR.2009.5209564.
  • [25] L. Dovat, O. Lambercy, R. Gassert, T. Maeder, ,T. Milner, T. C. Leong, and E. Burdet, “HandCARE: ,A Cable-Actuated Rehabilitation System to Train ,Hand Function After Stroke”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 16, no. 6, 2008, 582–591 DOI: 10.1109/TNSRE.2008.2010347.
  • [26] S. Hesse, H. Kuhlmann, J. Wilk, C. Tomelleri, and ,S. G. B. Kirker, “A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: A case series in chronic and acute stroke patients”, Journal of NeuroEngineering and Rehabilitation, vol. 5, 2008 ,DOI: 10.1186/1743-0003-5- 21.
  • [27] C. N. Schabowsky, S. B. Godfrey, R. J. Holley, and P. S. Lum, “Development and pilot testing ofHEXORR: hand EXOskeleton Rehabilitation Robot”, Journal of NeuroEngineering and Rehabilitation, vol. 7, 2010 ,DOI: 10.1186/1743-0003-7-36.
  • [28] I. H. Ertas, E. Hocaoglu, D. E. Barkana, and V. Patoglu, “Finger exoskeleton for treatment of tendon ,injuries”. In: 2009 IEEE 11th International Conference on Rehabilitation Robotics, 2009, 194–201 ,DOI: 10.1109/ICORR.2009.5209487.
  • [29] H. Kawasaki, S. Ito, Y. Ishigure, Y. Nishimoto, ,T. Aoki, T. Mouri, H. Sakaeda, and M. Abe, “Development of a Hand Motion Assist Robot for Rehabilitation Therapy by Patient Self-Motion Control”. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007, 234–240 DOI: 10.1109/ICORR.2007.4428432.
  • [30] F. Wang, M. Shastri, C. L. Jones, V. Gupta, C. Osswald, X. Kang, D. G. Kamper, and N. Sarkar, “Design and control of an actuated thumb exoskeleton for hand rehabilitation following stroke”. In: 2011 IEEE International Conference on Robotics and Automation, 2011, 3688–3693 DOI: 10.1109/ICRA.2011.5980099.
  • [31] N. S. K. Ho, K. Y. Tong, X. L. Hu, K. L. Fung, X. J. Wei, W. Rong, and E. A. Susanto, “An EMG-driven exoskeleton hand robotic training device on chronić stroke subjects: Task training system for stroke ,rehabilitation”. In: IEEE International Conference ,on Rehabilitation Robotics, 2011 ,DOI: 10.1109/ICORR.2011.5975340.
  • [32] M. Mulas, M. Folgheraiter, and G. Gini, “An ,EMG-controlled Exoskeleton for Hand Rehabilitation”. In: 9th International Conference on Rehabilitation Robotics, 2005, 371–374 ,DOI: 10.1109/ICORR.2005.1501122.
  • [33] M. F. Rotella, K. E. Reuther, C. L. Hofmann, E. B. Hage, and B. F. BuSha, “An orthotic hand-assistive exoskeleton for actuated pinch and grasp”. In: 2009 IEEE 35th Annual Northeast Bioengineering Conference, 2009, 1–2 DOI: 10.1109/NEBC.2009.4967693.
  • [34] O. Lambercy, L. Dovat, H. Yun, S. K. Wee, C. Kuah, K. Chua, R. Gassert, T. Milner, C. L. Teo, and E. Burdet, “Rehabilitation of grasping and forearm ,pronation/supination with the Haptic Knob”. In: 2009 IEEE International Conference on Rehabilitation Robotics, 2009, 22–27 DOI: 10.1109/ICORR.2009.5209520.
  • [35] J. M. Ochoa, D. G. Kamper, M. Listenberger, and S. W. Lee, “Use of an electromyographically driven hand orthosis for training after stroke”. In: IEEE International Conference on Rehabilitation Robotics, 2011 DOI: 10.1109/ICORR.2011.5975382.
  • [36] U. Mali and M. Munih, “HIFE-haptic interface for finger exercise”. In: IEEE/ASME Transactions on Mechatronics, vol. 11, no. 1, 2006, 93–102 ,DOI: 10.1109/TMECH.2005.863363.
  • [37] H. Yamaura, K. Matsushita, R. Kato, and H. Yokoi, “Development of hand rehabilitation system for paralysis patient – Universal design using ,wire-driven mechanism”. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, 2009, 7122–7125 DOI: 10.1109/IEMBS.2009.5332885.
  • [38] A. Chiri, F. Giovacchini, N. Vitiello, E. Cattin, S. Roccella, F. Vecchi, and M. Carrozza, “HANDEXOS: Towards an exoskeleton device for the rehabilitation of the hand”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, 1106–1111 DOI: 10.1109/IROS.2009.5354376.
  • [39] J. Li, R. Zheng, Y. Zhang, and J. Yao, “iHand- Rehab: An interactive hand exoskeleton for active and passive rehabilitation”. In: IEEE International Conference on Rehabilitation Robotics, 2011 DOI: 10.1109/ICORR.2011.5975387.
  • [40] L. Dovat, O. Lambercy, V. Johnson, B. Salman, S. Wong, R. Gassert, E. Burdet, T. C. Leong, and T. Milner, “A Cable Driven Robotic System to Train Finger Function After Stroke”. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007, 222–227 DOI: 10.1109/ICORR.2007.4428430.
  • [41] F. Amirabdollahian, S. Ates, A. Basteris, A. Cesario, J. Buurke, H. Hermens, D. Hofs, E. Johansson, G. Mountain, N. Nasr, S. Nijenhuis, G. Prange, N. Rahman, P. Sale, F. Schätzlein, B. v. Schooten, and A. Stienen, “Design, development and deployment of a hand/wrist exoskeleton for homebased rehabilitation after stroke – SCRIPT project”, Robotica, vol. 32, no. 8, 2014, 1331–1346 DOI: 10.1017/S0263574714002288.
  • [42] J. M. Ochoa and D. Kamper, “Development of an actuated cable orthotic glove to provide assistance of finger extension to stroke survivors”, Revista Ingeniería Biomédica, vol. 3, no. 5, 2009, 75–82.
  • [43] H. H. Kwee, “Rehabilitation Robotics-Softening the Hardware”, IEEE Engineering in Medicine and Biology Magazine, vol. 14, no. 3, 1995, 330–335 DOI: 10.1109/51.391766.
  • [44] H. K. Yap, J. H. Lim, F. Nasrallah, J. C. H. Goh, and R. C. H. Yeow, “A soft exoskeleton for hand ,assistive and rehabilitation application using pneumatic actuators with variable stiffness”. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, 4967–4972 DOI: 10.1109/ICRA.2015.7139889.
  • [45] H. In, B. B. Kang, M. Sin, and K.-J. Cho, “Exo-Glove: A Wearable Robot for the Hand with a Soft Tendon Routing System”, IEEE Robotics Automation Magazine, vol. 22, no. 1, 2015, 97–105 DOI: 10.1109/MRA.2014.2362863.
  • [46] B. B. Kang, H. Lee, H. In, U. Jeong, J. Chung, and K.-J. Cho, “Development of a Polymer-Based Tendon-Driven Wearable Robotic Hand”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, 3750–3755 DOI: 10.1109/ICRA.2016.7487562.
  • [47] Y. S. Song, Y. Sun, R. van den Brand, J. von Zitzewitz, S. Micera, G. Courtine, and J. Paik, “Soft robot for gait rehabilitation of spinalized rodents”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, 971–976 DOI: 10.1109/IROS.2013.6696468.
  • [48] H. K. Yap, H. Y. Ng, and C.-H. Yeow, “High-Force ,Soft Printable Pneumatics for Soft Robotic Applications”, Soft Robotics, vol. 3, no. 3, 2016 ,DOI: 10.1089/soro.2016.0030.
  • [49] L. Connelly, Y. Jia, M. L. Toro, M. E. Stoykov, R.V.Kenyon, and D. G. Kamper, “A Pneumatic Glove and Immersive Virtual Reality Environment for Hand Rehabilitative Training After Stroke”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 5, 2010, 551–559 DOI: 10.1109/TNSRE.2010.2047588.
  • [50] M. C. H. Chua, L. J. Hoon, and R. C. H. Yeow, “Design and evaluation of Rheumatoid Arthritis rehabilitative Device (RARD) for laterally bent fingers”. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016, 839–843 DOI: 10.1109/BIOROB. 2016.7523732.
  • [51] B. Kim, H. In, D.-Y. Lee, and K.-J. Cho, “Development and assessment of a hand assist device: GRIPIT”, Journal of Neuroengineering and Rehabilitation, vol. 14, no. 1, 2017 DOI: 10.1186/s12984-017-0223-4.
  • [52] Y. H. Chan, Z. Tse, and H. Ren, “Design evolution and pilot study for a kirigami-inspired flexible and soft anthropomorphic robotic hand”. In: 2017 18th International Conference on Advanced ,Robotics (ICAR), 2017, 432–437 DOI: 10.1109/ICAR.2017.8023645.
  • [53] L. Paez, G. Agarwal, and J. Paik, “Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement”, Soft Robotics, vol. 3, no. 3,2016, 109–119 DOI: 10.1089/soro.2016.0023.
  • [54] Y. She, J. Chen, H. Shi, and H.-J. Su, “Modeling and Validation of a Novel Bending Actuator for Soft Robotics Applications”, Soft Robotics, vol. 3, no. 2, 2016, 71–81 DOI: 10.1089/soro.2015.0022.
  • [55] H. K. Yap, J. H. Lim, F. Nasrallah, J. Cho Hong Goh,and C.-H. Yeow, “Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications”, Journal of Medical Engineering & Technology, vol. 40, no. 4, 2016, 199–209 DOI: 10.3109/03091902.2016.1161853.
  • [56] P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove for combined assistance and at-home rehabilitation”, Robotics and Autonomous Systems, vol. 73, 2015, 135–143 DOI: 10.1016/j.robot.2014.08.014.
  • [57] P. Polygerinos, K. C. Galloway, S. Sanan, M. Herman, and C. J. Walsh, “EMG controlled soft robotic glove for assistance during activities of daily living”. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015, 55–60 DOI: 10.1109/ICORR.2015.7281175.
  • [58] A. Stilli, A. Cremoni, M. Bianchi, A. Ridolfi, F. Gerii, F. Vannetti, H. A. Wurdemann, B. Allotta, and K. Althoefer, “AirExGlove — A Novel Pneumatic Exoskeleton Glove for Adaptive Hand Rehabilitation in Post-Stroke Patients”. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft), 2018, 579–584 DOI: 10.1109/ROBOSOFT. 2018.8405388.
  • [59] T. Jiralerspong, K. H. L. Heung, R. K. Y. Tong, and Z. Li, “A Novel Soft Robotic Glove for Daily Life Assistance”. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), 2018, 671–676 DOI: 10.1109/BIOROB. 2018.8488060.
  • [60] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft Robotic Grippers”, Advanced Materials, 2018 DOI: 10.1002/adma.201707035.
  • [61] C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and D. Prattichizzo, “Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives”, IEEE Transactions on Haptics, vol. 10, no. 4, 2017, 580–600 DOI: 10.1109/TOH.2017.2689006.
  • [62] P. Polygerinos, K. C. Galloway, S. Sanan, M. Herman, and C. J. Walsh, “EMG controlled soft robotic glove for assistance during activities of daily living”. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015, 55–60 DOI: 10.1109/ICORR.2015.7281175.
  • [63] B. B. Kang, H. Lee, H. In, U. Jeong, J. Chung, and K.-J. Cho, “Development of a polymer-based tendon-driven wearable robotic hand”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, 3750–3755 DOI: 10.1109/ICRA.2016.7487562.
  • [64] Y. She, C. Li, J. Cleary, and H.-J. Su, “Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors”, Journal of Mechanisms and Robotics, vol. 7, no. 2, 2015 DOI: 10.1115/1.4029497.
  • [65] J. P. King, D. Bauer, C. Schlagenhauf, K.-H. Chang, D. Moro, N. Pollard, and S. Coros, “Design. Fabrication, and Evaluation of Tendon-Driven MultiFingered Foam Hands”. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), 2018, 1–9 DOI: 10.1109/HUMANOIDS. 2018.8624997.
  • [66] P. Polygerinos, K. C. Galloway, E. Savage, M. Herman, K. O. Donnell, and C. J. Walsh, “Soft robotic glove for hand rehabilitation and task specific training”. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, 2913––2919 DOI: 10.1109/ICRA.2015.7139597.
  • [67] J. Wang, Z. Liu, and Y. Fei, “Design and Testing of a Soft Rehabilitation Glove Integrating Finger and Wrist Function”, Journal of Mechanisms and Robotics, vol. 11, no. 1, 2019 DOI: 10.1115/1.4041789.
  • [68] Y. Yang, Y. Chen, Y. Li, M. Z. Q. Chen, and Y. Wei, “Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material”, Soft Robotics, vol. 4, no. 2, 2017, 147–162 DOI: 10.1089/soro.2016.0034.
  • [69] P. Polygerinos, B. Mosadegh, and A. Campo, “Fabrication | Soft robotics toolkit”. 62 https://softroboticstoolkit.com/book/pneunets-fabrication. Accessed on: 2019-10-16.
  • [70] B. Mosadegh, P. Polygerinos, C. Keplinger, S.Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. Whitesides, “Pneumatic Networks for Soft Robotics that Actuate Rapidly”, Advanced Functional Materials, vol. 24, no. 15, 2014, 2163–2170 DOI: 10.1002/adfm.201303288.
  • [71] P. Polygerinos, B. Mosadegh, and A. Campo, “Design | Soft robotics toolkit”. https://softroboticstoolkit.com/book/pneunets-design. Accessed on: 2019-10-16.
  • [72] D. Drotman, M. Ishida, S. Jadhav, and M. T. Tolley, “Application-Driven Design of Soft, 3-D Printed, Pneumatic Actuators with Bellows”, IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1,
  • 2019, 78–87 DOI: 10.1109/TMECH.2018.2879299.
  • [73] C. G. Rose and M. K. O’Malley, “Hybrid Rigid- Soft Hand Exoskeleton to Assist Functional Dexterity”, IEEE Robotics and Automation Letters, vol. 4, no. 1, 2019, 73–80 DOI: 10.1109/LRA.2018.2878931.
  • [74] P. M. Aubin, H. Sallum, C. Walsh, L. Stirling, and A. Correia, “A pediatric robotic thumb exoskeleton for at-home rehabilitation: The Isolated Orthosis for Thumb Actuation (IOTA)”. In: IEEE 13th International Conference on Rehabilitation Robotics, 2013 DOI: 10.1109/ICORR.2013.6650500.
  • [75] H. Zhang, A. S. Kumar, F. Chen, J. Y. H. Fuh, and M. Y. Wang, “Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands”, IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, 2019, 120–131 DOI: 10.1109/TMECH.2018.2874067.
  • [76] A. Souhail and P. Vassakosol, “Low Cost Soft Robotic Grippers for Reliable Grasping”, Journal of Mechanical Engineering Research and Developments, vol. 41, no. 4, 2018, 88–95 DOI: 10.26480/jmerd.04.2018.88.95.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9be4b2f1-dc8a-4390-9779-fc057fd00ad6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.