PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic device with self-braking for fixation objects in executive links of technological equipment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main characteristics of a new automatic device for the fixation of objects in executive links of technological equipment, which determine its suitability for use, are considered. The device is based on a new structure that ensures its self-braking after the process of object fixation and increases the reliability of holding the objects, which is especially important in safety-critical applications. The proposed structure can be implemented for use in various types of executive links of technological equipment, and in the paper, it is considered the most complex application of the device—as part of a spindle assembly. For the proposed design, the method of calculating the main parameters of this type of mechanism is presented. Based on the results of the research, analytical and graphical dependencies have been obtained describing the change of the clamping force from 45 to 15 kN when increasing the spindle speed up to 10000 rpm, and the dependence of the clamping force on the torque at the input link. Based on the results of the research, a preliminary conclusion has also been drawn regarding the possibility of using electromechanical clamping mechanisms of the proposed type as a part of spindle units of machine tools, also because the rotor diameter of the mechanism is within 100 mm and the stator is within 200 mm.
Rocznik
Strony
7--14
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Faculty of Transport and Mechanical Engineering, Department of Applied Mechanics and Mechatronics, Lutsk National Technical University, Lvivska Str 75, 43018 Lutsk, Ukraine
Bibliografia
  • 1. Noske H. Monitoring of gripping force in lathe chucks. Fault Detec-tion, Supervision and Safety for Technical Processes 1991. IFAC Symposia Series. Baden-Baden, Germany 1992;6:581-586. https://doi.org/10.1016/B978-0-08-041275-7.50092-2
  • 2. Prydalnyi B, Sulym H. Identification of analytical dependencies of the operational characteristics of the workpiece clamping mechanisms with the rotary movement of the input link. Acta Mechanica et Auto-matica. 2021;15(1):47-52. https://doi.org/10.2478/ama-2021-0007
  • 3. Prydalnyi B. Mathematical Model of a Backlash Elimination in the New Clamping Mechanism. Lecture Notes in Mechanical Engineer-ing. 2022;1:109–118. https://doi.org/10.1007/978-3-030-91327-4_11
  • 4. Thorenz B, Westermann H, Kafara M, Nuetzel M, Steinhilper R. Evaluation of the influence of different clamping chuck types on en-ergy consumption, tool wear and surface qualities in milling opera-tions. Procedia Manufacturing. 2018;21:575-582. https://doi.org/10.1016/j.promfg.2018.02.158
  • 5. Yadav MH, Mohite SS. Controlling deformations of thin-walled Al6061-T6 components by adaptive clamping. Procedia Manufactur-ing. 2018;20:509-516. https://doi.org/10.1016/j.promfg.2018.02.076
  • 6. Shaoke W, Jun H, Fei D. Modelling and characteristic investigation of spindle-holder assembly under clamping and centrifugal forces. Journal of Mechanical Science and Technology. 2019;33(5):2397-2405. https://doi.org/:10.1007/s12206-019-0438-3
  • 7. Alquraan T, Kuznetsov Yu, Tsvyd T. High-speed clamping mecha-nism of the CNC lathe with compensation of centrifugal forces. Pro-cedia engineering. 2016;150:689-695. https://doi.org/:10.1016/j.proeng.2016.07.081
  • 8. Estrems M, Carrero-Blanco J, Cumbicus W, Francisco O, Sánchez H. Contact mechanics applied to the machining of thin rings. Proce-dia Manufacturing. 2017;13:655-662. https://doi.org/10.1016/j.promfg.2017.09.138
  • 9. Gang Wang, Yansheng Cao, Yingfeng Zhang. Digital twin-driven clamping force control for thin-walled parts. Advanced Engineering Informatics. 2022;51: 1474-0346. https://doi.org/10.1016/j.aei.2021.101468
  • 10. Pavankumar R, Gurudath B, Virendra A, Subray R. Failure of hydrau-lic lathe chuck assembly. Engineering Failure Analysis. 2022;133: 106001. https://doi.org/10.1016/j.engfailanal.2021.106001
  • 11. Estrems M, Arizmendi M, Zabaleta A.J, Gil A. Numerical method to calculate the deformation of thin rings during turning operation and its influence on the roundness tolerance. Procedia Engineering. 2015;132:872-879. https://doi.org/10.1016/j.proeng.2015.12.572
  • 12. Shamei M, Tajalli SA. Stability and Bifurcation Analysis in Turning of Flexible Parts with Spindle Speed Variation Using FEM Simulation Data. International journal of structural stability and dynamics. 2023; 2450004. https://doi.org/10.1142/s0219455424500044
  • 13. Dong X, Shen X, & Fu Z. Stability analysis in turning with variable spindle speed based on the reconstructed semi-discretization meth-od. International Journal of Advanced Manufacturing Technology. 2021;117:3393–3403. https://doi.org/10.1007/s00170-021-07869-8
  • 14. Joch R, Šajgalík M, Drbúl M, Holubják J, Czán A, Bechný V, Matúš M. The Application of Additive Composites Technologies for Clamp-ing and Manipulation Devices in the Production Process. Materials. 2023;16(10):3624. https://doi.org/10.3390/ma16103624
  • 15. Beri B, Meszaros G, Stepan G. Machining of slender workpieces subjected to time-periodic axial force: stability and chatter suppres-sion. Journal of Sound and Vibration. 2021;504:116114. https://doi.org/10.1016/j.jsv.2021.116114
  • 16. Soriano-Heras E, Rubio H, Bustos A, Castejon C. Mathematical Analysis of the Process Forces Effect on Collet Chuck Holders. Mathematics. 2021;9(5):492. https://doi.org/10.3390/math9050492
  • 17. Liang Z, Zhao C, Zhou H, et al. Investigation on fixture design and precision stability of new-type double collect chuck for machining of long ladder shaft gear. J Mech Sci Technol. 2019;33:323–332. https://doi.org/10.1007/s12206-018-1234-1
  • 18. Song QH, Liu ZQ, Wan Y, Ai X. Instability of internal damping due to collet chuck holder for rotating spindle-holder-tool system. Mecha-nism and Machine Theory. 2016;101:95-115. https://doi.org/10.1016/j.mechmachtheory.2016.03.007
  • 19. Pasternak V, Samchuk L, Huliieva N, Andrushchak I, Ruban A. Investigation of the properties of powder materials using computer modelling. Materials Science Forum. 2021;1038:33-39. https://doi.org/10.4028/www.scientific.net/MSF.1038.33
  • 20. Li C, Zou Z, Duan W, Liu J, Gu F, Ball AD. Characterizing the Vibra-tion Responses of Flexible Workpieces during the Turning Process for Quality Control. Applied Sciences-Basel. 2023;13(23):12611. https://doi.org/10.3390/app132312611
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9be40220-207f-4610-92e3-00df9385cc09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.