PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Old materials – new capabilities: lattice materials in structural mechanics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lattice materials (LM) are a novel concept stemming from the combination of crystallography and structural optimisation algorithms. Their practical applications have become real with the advent of versatile additive layer manufacturing (ALM) techniques and the development of dedicated CAD/CAE tools. This work critically reviews one of the major claims concerning LMs, namely their excellent stiffness-to-weight performance. First, a brief literature review of spatially uniform LMs is presented, focusing on specific strength of standard engineering materials as compared with novel structures. An original modelling and optimisation is carried out on a flat panel subject to combined shear and bending load. The calculated generalised specific stiffness is compared against reference values obtained for a uniform panel and the panel subjected to topological optimisation. The monomaterial, a spatially repetitive solution turns out to be poorly suited for stiff, lightweight designs, because of suboptimal material distribution. Spatially non-uniform and locally size-optimised structures perform better. However, its advantage over manufacturable, topologically-optimised conventional designs can at best be marginal (< 10%). Cubic-cell lattices cannot replace conventional bulk materials in the typical engineering use. The multi-cell-type and multi-material lattice structures, albeit beyond the scope of this article, are more promising from the point of view of mechanical properties. The possibility of approaching the linear scaling reported in the recent litterature can make them an attractive option in ultra-low weight designs.
Rocznik
Strony
213--226
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Department of Technical Physics and Applied Mathematics, Gdańsk, Poland and DES ART Ltd., Gdynia, Poland
Bibliografia
  • 1. Ashby M., Cebon D., 1993, Materials selection in mechanical design, Journal de Physique IV Colloque, 03, C7, C7-1-C7-9
  • 2. Bacigalupo1 A., Lepidi M., Gnecco G., Gambarotta L., 2015, Optimal design of auxetic hexachiral metamaterials with local resonators, Smart Materials and Structures, 25, 5
  • 3. Banhart J., 2005, Aluminium foams for lighter vehicles, International Journal of Vehicle Design, 37
  • 4. Bauer J., Schroer A., Schwaiger R., Kraft O., 2016, Approaching theoretical strength in glassy carbon nanolattices, Nature Materials, 15, 438-443
  • 5. Cambridge Press, 2003, Materials Data Book, 2003 Edition, Cambridge University Engineering Department
  • 6. Dias W., 2015, http://insider.altairhyperworks.com/design-and-optimization-of-lattice-structures -for-3d-printing-using-altair-optistruct/
  • 7. Dong L., Wadley H., 2015, Mechanical properties of carbon fiber composite octet-truss lattice structures, Composites Science and Technology, 119, 26-33
  • 8. Hawreliak J.A., Lind J., Maddox B., Barham M., Messner M., Barton N., Jensen B.J., Kumar M., 2016, Dynamic behavior of engineered lattice materials, Nature Scientific Reports, 6, 28094
  • 9. Jiang Y., Wang Q., 2016, Highly-stretchable 3D-architected mechanical metamaterials, Nature Scientific Report, 6, 34147
  • 10. Junyi L., Balint D.S., 2016, A parametric study of the mechanical and dispersion properties of cubic lattice structures, International Journal of Solids and Structures, 91, 55-71
  • 11. Krassenstein E., Lyles D.P., 2014, https://3dprint.com/29958/3d-printed-aluminum-lattice/
  • 12. Kumar V., Manogharan G., Cormier D.R., 2009, Design of periodic cellular structures for heat exchanger applications, 20th Annual International Solid Freeform Fabrication Symposium
  • 13. Lopatin A.V., Morozov E.V., Shatov A.V., 2017, Buckling of the composite anisogrid lattice plate with clamped edges under shear load, Composite Structures, 159, 72-80
  • 14. Messner M.C., 2016, Optimal lattice-structured materials, Journal of the Mechanics and Physics of Solids, 96, 162-183
  • 15. Mazur M., Leary M., Sun S., Vcelka M., Shidid D., Brandtet M., 2016, Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM), The International Journal of Advanced Manufacturing Technology, 84, 5, 1391-1411
  • 16. Pasternak E., Shufrin I., Dyskin A., 2016, Thermal stresses in hybrid materials with auxetic inclusions, Composite Structures, 138, 313-321
  • 17. Paulose J., Meeussen A.S., Vitelli V., 2015, Selective buckling via states of self-stress in topological metamaterials, Proceedings of the National Academy of Sciences, USA, 112, 7639-7644
  • 18. Serra-Garcia M., Lydon J., Daraio C., 2016, Extreme stiffness tunability through the excitation of nonlinear defect modes, Physical Review E, 93
  • 19. Srivastava A., 2016, Metamaterial properties of periodic laminates, Journal of the Mechanics and Physics of Solids, 96, 252-263
  • 20. Sullivan K.T., Zhu C., Duoss E.B., Gash A.E., Kolesky D.B., Kuntz J.D., Lewis J.A., Spadaccini C.M., 2016, Controlling material reactivity using architecture, Advanced Materials, 28, 1934-1939
  • 21. Tian J., Lu T.J., Hodson H.P., Queheillalt D.T., Wadleyet H.N.G., 2007, Cross flow heat exchange of textile cellular metal core sandwich panels, International Journal of Heat and Mass Transfer, 50, 2521-2536
  • 22. Toropova M.M., Steeves C.A., 2016, Bimaterial lattices as thermal adapters and actuators, Smart Materials and Structures, 25, 11
  • 23. Wadley H.N.G., Queheillalt D.T., 2007, Thermal applications of cellular lattice structures, Materials Science Forum, 539-543, 242-247
  • 24. Wang Q., Jackson J.A., Ge Q., Hopkins J.B., Spadaccini C.M., Fang N.X., 2016, Lightweight mechanical metamaterials with tunable negative thermal expansion, Physical Review Letter, 117
  • 25. Xu H., Pasini D., 2016, Structurally efficient three-dimensional metamaterials with controllable thermal expansion, Nature Scientific Reports, 6, 34924 26. Yin S., Li J., Binghe L., Kangpei M., Huan Y., Nutt S.R., Xu J., 2017, Honeytubes: Hollow lattice truss reinforced honeycombs for crushing protection, Composite Structures, 160, 1147-1154
  • 27. Zheng X., Lee H., Weisgraber T.H., Shusteff M., DeOtte J., Duoss E.B., Kuntz J.D., Biener M.M., Ge Q., Jackson J.A., Kucheyev S.O., Fang N.X., Spadaccini C.M., 2014, Ultralight, ultrastiff mechanical metamaterials, Science, 344, 1373-1377
  • 28. Zhu C., Han T.Y.-J., Duoss E.B., Golobic A.M., Kuntz J.D., Spadaccini C.M., Worsley M.A., 2015, Highly compressible 3D periodic graphene aerogel microlattices, Nature Communications, 6, 6962
  • 29. Ziminska M., Dunne N., Hamilton A.R., 2016, Porous materials with tunable structure and mechanical properties via templated layer-by-layer assembly, ACS Applied Materials and Interfaces, 8, 34, 21968-21973
  • 30. Zok F.W., Latture R.M., Begley M.R., 2016, Periodic truss structures, Journal of the Mechanics and Physics of Solids, 96, 184-203
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9be14bfe-9724-4991-8067-4cb8a1d2b519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.