PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Exhaust gas heat recovery from a marine engine using a thermal oil system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recovery of exhaust gas recovery from marine engines is gaining attention in regard to saving fuel and improving system efficiency. Waste heat recovery is particularly beneficial for providing thermal and electric power, and offers efficient solutions to both economic and environmental challenges. The use of waste heat recovery technology offers the opportunity to lower fuel consumption and improve systems, and this approach also falls in line with the stringent emissions guidelines of the International Maritime Organization. This paper describes a unique exhaust gas heat recovery system in which a thermal oil system is used to heat fuel and feed cargo, in order to lower exploitation costs while also addressing environmental issues. CFD simulations of the heat recovery unit with plain and finned helix coils provide important insights into their thermal performance and pressure characteristics. The results indicate that the incorporation of fins could markedly enhance the heat transfer performance. Finned configurations are also found to have higher oil outlet temperatures, reaching up to 145.4°C in the case of a rectangular configuration. In general, this study contributes to the advancement of waste heat recovery technologies in marine applications.
Rocznik
Tom
Strony
89--99
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
  • Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
autor
  • University of Technology and Education, The University of Danang, Danang, Viet Nam
  • Faculty of Marine Engineering, Gdynia Maritime University, Gdansk, Poland
  • Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
  • PATET Research Group Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
Bibliografia
  • 1. Nguyen HP, Nguyen CTU, Tran TM, Dang QH, Pham NDK. Artificial Intelligence and Machine Learning for Green Shipping: Navigating towards Sustainable Maritime Practices. JOIV Int J Informatics Vis 2024;8:1–17. https://doi.org/10.62527/joiv.8.1.2581.
  • 2. Pham NDK, Dinh GH, Pham HT, Kozak J, Nguyen HP. Role of Green Logistics in the Construction of Sustainable Supply Chains. Polish Marit Res 2023;30:191–211. https://doi.org/10.2478/pomr-2023-0052.
  • 3. Le TT, Sharma P, Pham NDK, Le DTN, Le VV, Osman SM, et al. Development of comprehensive models for precise prognostics of ship fuel consumption. J Mar Eng Technol 2024:1–15. https://doi.org/10.1080/20464177.2024.2372888.
  • 4. Vu VV, Le PT, Do TMT, Nguyen TTH, Tran NBM, Paramasivam P, et al. An insight into the Application of AI in maritime and Logistics toward Sustainable Transportation. JOIV Int J Informatics Vis 2024;8:158–74. https://doi.org/10.62527/joiv.8.1.2641.
  • 5. IMO. Fourth IMO GHG Study 2020: Executive Summary. 2021.
  • 6. Sui C, de Vos P, Stapersma D, Visser K, Ding Y. Fuel Consumption and Emissions of Ocean-Going Cargo Ship with Hybrid Propulsion and Different Fuels over Voyage. J Mar Sci Eng 2020;8:588. https://doi.org/10.3390/jmse8080588.
  • 7. Coraddu A, Oneto L, Baldi F, Anguita D. Vessels fuel consumption forecast and trim optimisation: A data analytics perspective. Ocean Eng 2017. https://doi.org/10.1016/j.oceaneng.2016.11.058.
  • 8. Kowalski J, Tarelko W. NOx emission from a two-stroke ship engine: Part 2 - Laboratory test. Appl Therm Eng 2009. https://doi.org/10.1016/j.applthermaleng.2008.06.031.
  • 9. Tarelko W, Rudzki K. Applying artificial neural networks for modelling ship speed and fuel consumption. Neural Comput Appl 2020;32. https://doi.org/10.1007/s00521-020-05111-2.
  • 10. Hoang AT, Tran VD, Dong VH, Le AT. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. J Mar Eng Technol 2022;21:73–81. https://doi.org/10.1080/20464177.2019.1595355.
  • 11. Hoang AT, Pandey A, Martinez De Oses FJ, Chen W-H, Said Z, Ng KH, et al. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renew Sustain Energy Rev 2023;188:113790. https://doi.org/10.1016/j.rser.2023.113790.
  • 12. Nguyen HP, Hoang AT, Nizetic S, Nguyen XP, Le AT, Luong CN, et al. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. Int Trans Electr Energy Syst 2021;31:e12580. https://doi.org/10.1002/2050-7038.12580.
  • 13. Hoang AT, Foley AM, Nižetić S, Huang Z, Ong HC, Olcer AI, et al. Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. J Clean Prod 2022;355:131772. https://doi.org/10.1016/j.jclepro.2022.131772.
  • 14. Koumentakos A. Developments in Electric and Green Marine Ships. Appl Syst Innov 2019;2:34. https://doi.org/10.3390/asi2040034.
  • 15. Doerry N, Amy J, Krolick C. History and the Status of Electric Ship Propulsion, Integrated Power Systems, and Future Trends in the U.S. Navy. Proc IEEE 2015;103:2243–51. https://doi.org/10.1109/JPROC.2015.2494159.
  • 16. Sharma P, Sahoo BB, Said Z, Hadiyanto H, Nguyen XP, Nižetić S, et al. Application of machine learning and Box- Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and wastederived biogas. Int J Hydrogen Energy 2023;48:6738–60. https://doi.org/10.1016/j.ijhydene.2022.04.152.
  • 17. Cao DN, Johnson AJT. A Simulation Study on a Premixedcharge Compression Ignition Mode-based Engine Using a Blend of Biodiesel/Diesel Fuel under a Split Injection Strategy. Int J Adv Sci Eng Inf Technol 2024;14:451–71. https://doi.org/10.18517/ijaseit.14.2.20007.
  • 18. Hu N, Zhou P, Yang J. Reducing emissions by optimising the fuel injector match with the combustion chamber geometry for a marine medium-speed diesel engine. Transp Res Part D Transp Environ 2017;53:1–16. https://doi.org/10.1016/j.trd.2017.03.024.
  • 19. Singh DV, Pedersen E. A review of waste heat recovery technologies for maritime applications. Energy Convers Manag 2016;111:315–28. https://doi.org/10.1016/j.enconman.2015.12.073.
  • 20. Kristiansen NR, Snyder GJ, Nielsen HK, Rosendahl L. Waste Heat Recovery from a Marine Waste Incinerator Using a Thermoelectric Generator. J Electron Mater 2012;41:1024–9. https://doi.org/10.1007/s11664-012-2009-6.
  • 21. Eyring V, Kohler HW, van Aardenne J, Lauer A. Emissions from international shipping: 1. The last 50 years. J Geophys Res Atmos 2005;110. https://doi.org/10.1029/2004JD005619.
  • 22. Rodriguez CG, Lamas MI, Rodriguez J de D, Abbas A. Possibilities of Ammonia as Both Fuel and NOx Reductant in Marine Engines: A Numerical Study. J Mar Sci Eng 2022;10:43. https://doi.org/10.3390/jmse10010043.
  • 23. Grljušić M, Medica V, Račić N. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production. Energies 2014;7:7368–94. https://doi.org/10.3390/en7117368.
  • 24. Chircop A. The IMO Initial Strategy for the Reduction of GHGs from International Shipping: A Commentary. Int J Mar Coast Law 2019;34:482–512. https://doi.org/10.1163/15718085-13431093.
  • 25. Korczewski Z. Research on the effect of low-sulphur marine fuels on the dynamic characteristics of a CI engine. Combust Engines 2023. https://doi.org/10.19206/CE-168390.
  • 26. Korczewski Z. Energy and Emission Quality Ranking of Newly Produced Low-Sulphur Marine Fuels. Polish Marit Res 2022;29:77–87. https://doi.org/10.2478/pomr-2022-0045.
  • 27. Kavussanos M, Strandenes SP, Thanopoulou H. Special issue: ends of eras and new beginnings: twenty-first century challenges for shipping. Marit Econ Logist 2022;24:347–67. https://doi.org/10.1057/s41278-021-00207-5.
  • 28. Saha M, Tregenza O, Twelftree J, Hulston C. A review of thermoelectric generators for waste heat recovery in marine applications. Sustain Energy Technol Assessments 2023;59:103394. https://doi.org/10.1016/j.seta.2023.103394.
  • 29. Kyriakidis F, Sorensen K, Singh S, Condra T. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines. Energy Convers Manag 2017;151:286–95. https://doi.org/10.1016/j.enconman.2017.09.004.
  • 30. Diaz-Secades LA, Gonzalez R, Rivera N. Waste heat recovery from marine engines and their limiting factors: Bibliometric analysis and further systematic review. Clean Energy Syst 2023;6:100083. https://doi.org/10.1016/j. cles.2023.100083.
  • 31. Shu G, Liang Y, Wei H, Tian H, Zhao J, Liu L. A review of waste heat recovery on two-stroke IC engine aboard ships. Renew Sustain Energy Rev 2013;19:385–401. https://doi. org/10.1016/j.rser.2012.11.034.
  • 32. Mondejar ME, Andreasen JG, Pierobon L, Larsen U, Thern M, Haglind F. A review of the use of organic Rankine cycle power systems for maritime applications. Renew Sustain Energy Rev 2018;91:126–51. https://doi.org/10.1016/j. rser.2018.03.074.
  • 33. Zhu S, Zhang K, Deng K. A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles. Renew Sustain Energy Rev 2020;120:109611.
  • 34. Sun W, Yue X, Wang Y. Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat. Energy Convers Manag 2017;135:63–73. https://doi.org/10.1016/j.enconman.2016.12.042.
  • 35. Astolfi M, Alfani D, Lasala S, Macchi E. Comparison between ORC and CO2 power systems for the exploitation of lowmedium temperature heat sources. Energy 2018;161:1250–61. https://doi.org/10.1016/j.energy.2018.07.099.
  • 36. Mrzljak V, Poljak I, Prpić-Oršić J, Jelić M. Exergy analysis of marine waste heat recovery CO2 closed-cycle gas turbine system. Pomorstvo 2020;34:309–22. https://doi.org/10.31217/p.34.2.12.
  • 37. Feng Y, Liu Y-Z, Wang X, He Z-X, Hung T-C, Wang Q, et al. Performance prediction and optimization of an organic Rankine cycle (ORC) for waste heat recovery using back propagation neural network. Energy Convers Manag 2020;226:113552. https://doi.org/10.1016/j.enconman.2020.113552.
  • 38. Kallis G, Roumpedakis TC, Pallis P, Koutantzi Z, Charalampidis A, Karellas S. Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle. Energy 2022;257:124698. https://doi.org/10.1016/j.energy.2022.124698.
  • 39. Yang M-H, Yeh R-H. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Appl Energy 2015;149:1–12. https://doi.org/10.1016/j.apenergy.2015.03.083.
  • 40. Hoang AT. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl Energy 2018;231:138–66.
  • 41. Altosole M, Benvenuto G, Campora U, Laviola M, Trucco A. Waste Heat Recovery from Marine Gas Turbines and Diesel Engines. Energies 2017;10:718. https://doi.org/10.3390/en10050718.
  • 42. Konur O, Colpan CO, Saatcioglu OY. A comprehensive review on organic Rankine cycle systems used as waste heat recovery technologies for marine applications. Energy Sources, Part A Recover Util Environ Eff 2022;44:4083–122. https://doi.org/10.1080/15567036.2022.2072981.
  • 43. Song J, Song Y, Gu C. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy 2015;82:976–85. https://doi.org/10.1016/j.energy.2015.01.108.
  • 44. Konur O, Yuksel O, Korkmaz SA, Colpan CO, Saatcioglu OY, Muslu I. Thermal design and analysis of an organic rankine cycle system utilizing the main engine and cargo oil pump turbine based waste heats in a large tanker ship. J Clean Prod 2022;368:133230. https://doi.org/10.1016/j.jclepro.2022.133230.
  • 45. Nolan DP. Fire Fighting Pumping Systems at Industrial Facilities. Elsevier Science; 2011.
  • 46. MOL-LUB Ltd. MOL Thermol 46 heat transfer oil 2021;36:10–1.
  • 47. Temam R. Navier–Stokes equations: theory and numerical analysis. vol. 343. American Mathematical Society; 2024.
  • 48. Guide U, Overview P. Simcenter STAR-CCM + 2310 User Guide 2024.
  • 49. Yu L, Righetto AM. Depth-averaged turbulence model and applications. Adv Eng Softw 2001;32:375–94. https://doi.org/10.1016/S0965-9978(00)00100-9.
  • 50. Yang F, Zhang H, Bei C, Song S, Wang E. Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator. Energy 2015;91:128–41. https://doi.org/10.1016/j.energy.2015.08.034.
  • 51. Hoang AT, Nguyen XP, Le AT, Pham MT, Hoang TH, Al-Tawaha ARMS, et al. Power generation characteristics of a thermoelectric modules-based power generator assisted by fishbone-shaped fins: Part II – Effects of cooling water parameters. Energy Sources, Part A Recover Util Environ Eff 2021;43:381–93. https://doi.org/10.1080/15567036.2019.1624891.
  • 52. Zhang HG, Wang EH, Fan BY. Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery. Energy Convers Manag 2013;65:438–47. https://doi.org/10.1016/j.enconman.2012.09.017.
  • 53. Xie G, Sunden B, Wang Q, Tang L. Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks. Int J Heat Mass Transf 2009;52:2484–97. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.036.
  • 54. Bergman TL, Lavine AS, Incropera FP, DeWitt DP. Introduction to Heat Transfer. Wiley; 2011.
  • 55. Bejan A. Convection Heat Transfer. Wiley; 2013.
  • 56. Kakac S, Bergles AE, Mayinger F. Heat Exchangers: Thermal-hydraulic Fundamentals and Design. Hemisphere Publishing Corporation; 1981.
  • 57. Bergman TL. Fundamentals of Heat and Mass Transfer. Wiley; 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9be101c1-ad7c-4705-a0eb-ab6356a331bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.