Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The computation of energy dissipation in mechanical protective systems and the corresponding determination of their safe use in mine shafts, requires a precise description of their bending and elongation, for instance, in conditions of dynamic, transverse loading induced by the falling of mass. The task aimed to apply a fast parallactic rangefinder and then to mount it on a test stand, which is an original development of the Central Mining Institute's Laboratory of Rope Testing in Katowice. In the solution presented in this paper, the measuring method and equipment in which the parallactic laser rangefinder, provided with a fast converter and recording system, ensures non-contact measurement of elongation, deflection or deformation of the sample (construction) during impact loading. The structure of the unit, and metrological parameters are also presented. Additionally, the method of calibration and examples of the application in the impact tests of steel wire ropes are presented. The measurement data obtained will provide a basis for analysis, the prediction of the energy of events and for applying the necessary means to maintain explosion-proofness in the case of destructive damage to mechanical elements in the mine atmosphere. What makes these measurements novel is the application of a fast and accurate laser rangefinder to the non-contact measurement of crucial impact parameters of dynamic events that result in the destruction of the sample. In addition, the method introduces a laser scanning vibrometer with the aim of evaluating the parameters of the samples before and after destruction.
Wydawca
Czasopismo
Rocznik
Tom
Strony
211--218
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Central Mining Institute, Plac Gwarków 1, Katowice, 40-166, Poland
autor
- Central Mining Institute, Plac Gwarków 1, Katowice, 40-166, Poland
autor
- Central Mining Institute, Plac Gwarków 1, Katowice, 40-166, Poland
Bibliografia
- 1. Akai, A., Shiozawa, D., Sakagami, T., Otobe, S., & Inaba, K. (2012, July). Relationship between dissipated energy and fatigue limit for austenitic stainless steel. In Proc. of the ICEM15 - 15th international conferece on experimental mechanics. New trends and perspectives, Porto/Portugal (pp. 721-722).
- 2. APS-113 Electro-Seis. Retrived (2014) from: www.apsdynamics.com.
- 3. Barcikowski, M. (2012). Wpływ materiałów i struktury laminatów poliestrowo-szklanych na ich odporność na udar balistyczny (Effect of material and structure of polyester-glass laminates on ballistic impact). praca doktorska (Ph.D. thesis). Zachodnopomorski Uniwersytet Technologiczny w Szczecinie. Retrived (2014) from www.academia.eu.
- 4. Białożyt, T., Bochenek, W., Passia, H., Smoła, T., Szade, A., & Szot, M. (2008). New developments of laser-based measuring equipment for control of the condition of vertical and horizontal mine workings and structures in mining-affected areas. In New challenges and vision for mining - New technologies in mining (pp. 117-123). Kraków: Wyd. EJB (Proc. of the World Mining Congress).
- 5. Distance Sensors SensoPart. (2014). Czujnik FT 80 RLA. Retrived (2014) from: www.sensopart.de.
- 6. Hankus, J. (2000). Budowa i własności mechaniczne lin stalowych (Wyd. II). Katowice: Główny Instytut Górnictwa.
- 7. HBM Operation Manual. (2002). Operation Manual, PC measurement electronics Spider8, Hottinger Baldwin Messtechnik GmbH, Retrived (2010) from www.hbm.com.
- 8. ISO 16 063-41. (2011). Methods for the calibration of vibration and shock transducers. Part 41 calibration of laser vibrometers.
- 9. La Rosa, G., & Risitano, A. (2000). Thermographic methodology for rapid determination of the fatigue limit of material and mechanical components. International Journal of Fatigue, 22, 65-73.
- 10. Lipski, A., & Mroziński, S. (2008). Termowizyjna analiza zmiany temperatury w trakcie monotonicznego rozciągania próbki stalowej bez wyrażnej granicy plastyczności (Thermal analysis of the temperature changes during monotonic tensioning of steel sample without a defined yield point). In Materiały XXII Sympozjum Zmęczenie i mechanika pękania (pp. 193-200). Bydgoszcz.
- 11. Passia, H., Kompała, J., & Szade, A. (2012, July). Diagnostics of technical condition of various building structures based on monitoring using purpose - designed laser and acoustic equipment. In Proc. of the ICEM15 - 15th international conferece on experimental mechanics. New trends and perspectives, Porto/ Portugal (pp. 977-978).
- 12. Pałkowski, Sz. (1994). Konstrukcje cięgnowe (Constructions based on flexible connectors). Warszawa: Wydawnictwa Naukowo-Techniczne.
- 13. Pieczyska, E. A. (1999). Thermoelastic effect in austenitic steel referred to its hardening. Journal of Theoretical and Applied Mechanics, 37(2), 349-368.
- 14. Pytlik, A. (2002). Badania odporności udarowej kotwi górniczych (Investigation of impact resistance of mining rock bolts. Prace Naukowe GIG. Górnictwo i środowisko, 2, 25-41.
- 15. Siemieniec, A. (2002). Eksperyment w wytrzymałości materiałów. (Mechanical strenght of materials - experiment). In S. Wolny (Ed.), Wytrzymałość materiałów. (Part IV). Kraków: Akademia Górniczo-Hutnicza.
- 16. Zukas, J. A. (1990). Hight velocity impact dynamics. U.K.: J. Wiley&Sons Inc.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9be02f6c-81be-43b8-8730-f2b98c24101f