PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymptotic behavior of even-order noncanonical neutral differential equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we study the asymptotic behavior of even-order neutral delay differential equation (a⋅(u+ρ⋅u∘τ)(n−1))′(ℓ)+h(ℓ)u(g(ℓ))=0,ℓ≥ℓ0, where n≥4, and in noncanonical case, that is, ∞∫a−1(s)ds<∞. To the best of our knowledge, most of the previous studies were concerned only with the study of n-order neutral equations in canonical case. By using comparison principle and Riccati transformation technique, we obtain new criteria which ensure that every solution of the studied equation is either oscillatory or converges to zero. Examples are presented to illustrate our new results.
Wydawca
Rocznik
Strony
28--39
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Mathematics Department, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
  • Section of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39, 00186 Roma, Italy
autor
  • Department of Mathematics, Faculty of Education – Al-Nadirah, Ibb University, Ibb, Yemen
  • Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
  • Department of Medical Research, China Medical University, Taichung 40402, Taiwan
  • Department of Mathematics, JIS College of Engineering, Kalyani 741235, India
autor
  • Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
Bibliografia
  • [1] J. Blakely and N. Corron, Experimental observation of delay-induced radio frequency chaos in a transmission line oscillator, Chaos 14 (2004), 1035–1041, DOI: https://doi.org/10.1063/1.1804092.
  • [2] N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge, 1989; Academic Publishers Group, Dordrecht, 1993; Translated from the 1985 Russian original.
  • [3] T. Li, N. Pintus, and G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys. 70 (2019), 86, DOI: https://doi.org/10.1007/s00033-019-1130-2.
  • [4] Y. Benia and A. Scapellato, Existence of solution to Korteweg-de Vries equation in a non-parabolic domain, Nonlinear Anal.-Theory Methods Appl. 195 (2020), 111758, DOI: https://doi.org/10.1016/j.na.2020.111758.
  • [5] J. Džurina and I. Jadlovská, A note on oscillation of second-order delay differential equations, Appl. Math. Lett. 69 (2017), 126–132, DOI: https://doi.org/10.1016/j.aml.2017.02.003.
  • [6] G. E. Chatzarakis, O. Moaaz, T. Li, and B. Qaraad, Some oscillation theorems for nonlinear second-order differential equations with an advanced argument, Adv. Differ. Equ. 2020 (2020), 160, DOI: https://doi.org/10.1186/s13662-020-02626-9.
  • [7] S. S. Santra, A. K. Sethi, O. Moaaz, K. M. Khedher, and S.-W. Yao, New oscillation theorems for second-order differential equations with canonical and non-canonical operator via riccati transformation, Mathematics 9 (2021), no. 10, 1111, DOI: https://doi.org/10.3390/math9101111.
  • [8] S. S. Santra, O. Bazighifan, H. Ahmad, and Sh. Yao, Second-order differential equation with multiple delays: oscillation theorems and applications, Complexity 2020 (2020), 8853745, DOI: https://doi.org/10.1155/2020/8853745.
  • [9] S. S. Santra, K. M. Khedher, O. Moaaz, A. Muhib, and S.-W. Yao, Second-order impulsive delay differential systems: Necessary and sufficient conditions for oscillatory or asymptotic behavior, Symmetry 13 (2021), 722, DOI: https://doi.org/10.3390/sym13040722.
  • [10] R. P. Agarwal, Ch. Zhang, and T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput. 274 (2016), 178–181, DOI: https://doi.org/10.1016/j.amc.2015.10.089.
  • [11] O. Bazighifan, M. Ruggieri, S. S. Santra, and A. Scapellato, Qualitative properties of solutions of second-order neutral differential equations, Symmetry 12 (2020), 1520, DOI: https://doi.org/10.3390/sym12091520.
  • [12] S. R. Bohner, I. Grace, and I. Jadlovska, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), 1–12, DOI: https://doi.org/10.14232/ejqtde.2017.1.60.
  • [13] O. Moaaz, E. M. Elabbasy, and B. Qaraad, An improved approach for studying oscillation of generalized Emden-Fowler neutral differential equation, J. Ineq. Appl. 2020 (2020), 69, DOI: https://doi.org/10.1186/s13660-020-02332-w.
  • [14] O. Moaaz, M. Anis, D. Baleanu, and A. Muhib, More effective criteria for oscillation of second-order differential equations with neutral arguments, Mathematics 8 (2020), 986, DOI: https://doi.org/10.3390/math8060986.
  • [15] S. S. Santra, T. Ghosh, and O. Bazighifan, Explicit criteria for the oscillation of second-order differential equations with several sub-linear neutral coefficients, Adv. Diffrence Eqs. 2020 (2020), 643, DOI: https://doi.org/10.1186/s13662-020-03101-1.
  • [16] O. Moaaz, P. Kumam, and O. Bazighifan, On the oscillatory behavior of a class of fourth-order nonlinear differential equation, Symmetry 12 (2020), 524, DOI: https://doi.org/10.3390/sym12040524.
  • [17] O. Moaaz and A. Muhib, New oscillation criteria for nonlinear delay differential equations of fourth-order, Appl. Math. Comput. 377 (2020), 125192, DOI: https://doi.org/10.1016/j.amc.2020.125192.
  • [18] C. Park, O. Moaaz, and O. Bazighifan, Oscillation results for higher order differential equations, Axioms 9 (2020), 14, DOI: https://doi.org/10.3390/axioms9010014.
  • [19] C. Zhang, T. Li, B. Sun, and E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett. 24 (2011), 1618–1621, DOI: https://doi.org/10.1016/j.aml.2011.04.015.
  • [20] C. Zhang, R. P. Agarwal, M. Bohner, and T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett. 26 (2013), 179–183, DOI: https://doi.org/10.1016/j.aml.2012.08.004
  • [21] C. Zhang, T. Li, and S. H. Saker, Oscillation of fourth order delay differential equations, J. Math. Sci. 201 (2014), 296–309, DOI: https://doi.org/10.1007/s10958-014-1990-0.
  • [22] T. Li and Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett. 61 (2016), 35–41, DOI: https://doi.org/10.1016/j.aml.2016.04.012.
  • [23] O. Moaaz, R. A. El-Nabulsi, and O. Bazighifan, Oscillatory behavior of fourth-order differential equations with neutral delay, Symmetry 12 (2020), 371, DOI: https://doi.org/10.3390/sym12030371.
  • [24] O. Moaaz, I. Dassios, and O. Bazighifan, Oscillation criteria of higher-order neutral differential equations with several deviating arguments, Mathematics 8 (2020), no. 3, 412, DOI: https://doi.org/10.3390/math8030412
  • [25] O. Moaaz, S. Furuichi, and A. Muhib, New comparison theorems for the nth order neutral differential equations with delay inequalities, Mathematics 8 (2020), 454, DOI: https://doi.org/10.3390/math8030454.
  • [26] G. Xing, T. Li, and C. Zhang, Oscillation of higher-order quasi-linear neutral differential equations, Adv. Differ. Equ. 2011 (2011), 45, DOI: https://doi.org/10.1186/1687-1847-2011-45.
  • [27] A. Zafer, Oscillation criteria for even order neutral differential equations, Appl. Math. Lett. 11 (1998), 21–25, DOI: https://doi.org/10.1016/S0893-9659(98)00028-7.
  • [28] Q. Zhang, J. Yan, and L. Gao, Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients, Comput. Math. Appl. 59 (2010), 426–430, DOI: https://doi.org/10.1016/j.camwa.2009.06.027.
  • [29] G. Chatzarakis, S. Grace, and I. Jadlovska, Oscillation criteria for third-order delay differential equations, Adv. Differ. Equ. 2017 (2017), 330, DOI: https://doi.org/10.1186/s13662-017-1384-y.
  • [30] O. Moaaz, E. M. Elabbasy, and E. Shaaban, Oscillation criteria for a class of third order damped differential equations, Arab J. Math. Sci. 24 (2018), 16–30, DOI: https://doi.org/10.1016/j.ajmsc.2017.07.001.
  • [31] O. Moaaz, J. Awrejcewicz, and A. Muhib, Establishing new criteria for oscillation of odd-order nonlinear differential equations, Mathematics 8 (2020), no. 6, 937, DOI: https://doi.org/10.3390/math8060937.
  • [32] O. Moaaz, D. Baleanu, and A. Muhib, New aspects for non-existence of kneser solutions of neutral differential equations with odd-order, Mathematics 8 (2020), no. 4, 494, DOI: https://doi.org/10.3390/math8040494.
  • [33] A. Muhib, T. Abdeljawad, O. Moaaz, and E. M. Elabbasy, Oscillatory properties of odd-order delay differential equations with distribution deviating arguments, Appl. Sci. 10, (2020), no. 17, 5952, DOI: https://doi.org/10.3390/app10175952.
  • [34] R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory for Difference and Functional Differential Equations, Marcel Dekker, Kluwer Academic, Dordrecht, 2000.
  • [35] G. Chatzarakis, S. Grace, I. Jadlovska, T. Li, and T. Tunc, Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients, Complexity 2019 (2019), 5691758, DOI: https://doi.org/10.1155/2019/5691758.
  • [36] O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Difference Equ. 2019 (2019), 484, DOI: https://doi.org/10.1186/s13662-019-2418-4.
  • [37] I. Kiguradze and T. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, in: Mathematics and its Applications (Soviet Series), vol. 89, Kluwer Academic Publishers Group, Dordrecht, 1993, Translated from the 1985 Russian original.
  • [38] G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987.
  • [39] G. E. Chatzarakis and T. Li, Oscillation criteria for delay and advanced differential equations with nonmonotone arguments, Complexity 2018 (2018), 8237634, DOI: https://doi.org/10.1155/2018/8237634.
  • [40] Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays, Arch. Math. 36 (1981), 168–178.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bdfba63-2539-443d-bc05-1eb1812f1b61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.