Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Precise and fast diagnosis of COVID-19 cases play a vital role in early stage of medical treatment and prevention. Automatic detection of COVID-19 cases using the chest X-ray images and chest CT-scan images will be helpful to reduce the impact of this pandemic on the human society. We have developed a novel FractalCovNet architecture using Fractal blocks and U-Net for segmentation of chest CT-scan images to localize the lesion region. The same FractalCovNet architecture is also used for classification of chest X-ray images using transfer learning. We have compared the segmentation results using various model such as UNet, DenseUNet, Segnet, ResnetUNet, and FCN. We have also compared the classification results with various models like ResNet5-, Xception, InceptionResNetV2, VGG-16 and DenseNet architectures. The proposed FractalCovNet model is able to predict the COVID-19 lesion with high F-measure and precision values compared to the other state-of-the-art methods. Thus the proposed model can accurately predict the COVID-19 cases and discover lesion regions in chest CT without the manual annotations of lesions for every suspected individual. An easily-trained and high-performance deep learning model provides a fast way to identify COVID-19 patients, which is beneficial to control the outbreak of SARS-IICOV.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1025--1038
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
- Department of Information Technology, Anna University, MIT Campus, Chennai, India
- Department of Information Technology, Anna University, MIT Campus, Chennai, India
autor
- Department of Information Technology, Anna University, MIT Campus, Chennai, India
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, India
autor
- Department of Information Technology, Rajalakshmi Engineering College, Chennai, India
Bibliografia
- [1] Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265–9.
- [2] Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biolog Sci 2020;16:1678–85.
- [3] Le TT, Andreadakis Z, Kumar A, Gómez RR, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discovery 2020:305–6.
- [4] Sun C, Chen L, Yang J, Luo C, Zhang Y, Li J, et al. SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development. BioRxiv 2020.
- [5] Rakha A, Rasheed H, Batool Z, Akram J, Adnan A, Du J, COVID-19 Variants Database: A repository for Human SARSCoV-2 Polymorphism Data. BioRxiv 2020.
- [6] V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARSCoV-2. Nature Reviews Microbiology 2021;19:155–170.
- [7] Toyoshima Y, Nemoto K, Matsumoto S, Nakamura Y, Kiyotani K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J Hum Genet 2020;65:1075–82.
- [8] Xu X, Jiang X, Ma C, Du P, Li X, Lv S, et al. A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia. Engineering 2020;6(10):1122–9.
- [9] Larsson G, Maire M, Shakhnarovich G. FractalNet: Ultra-Deep Neural Networks without Residuals. In: ICLR. 2017.
- [10] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In: International Conference on Learning Representations.
- [11] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- [12] Szegedy C, Liu Wei, Jia Yangqing, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). p. 1–9.
- [13] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI); vol. 9351 of LNCS. Springer; 2015, p. 234–241.
- [14] Zhang R, Li G, Li Z, Cui S, Qian D, Yu Y. Adaptive Context Selection for Polyp Segmentation. In: International Conference on Medical Image Computing and ComputerAssisted Intervention. Springer; 2020. p. 253–62.
- [15] Fan DP, Ji GP, Zhou T, Chen G, Fu H, Shen J, et al. PraNet: Parallel Reverse Attention Network for Polyp Segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention.
- [16] Polsinelli M, Cinque L, Placidi G. A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recogn Lett 2020;140:95–100.
- [17] Gao K, Su J, Jiang Z, Zeng LL, Feng Z, Shen H, et al. Dual-branch combination network (DCN): Towards accurate diagnosis and lesion segmentation of COVID-19 using CT images. Med Image Anal 2021;67 101836.
- [18] Wang G, Liu X, Li C, Xu Z, Ruan J, Zhu H, et al. A Noise-Robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions From CT Images. IEEE Trans Med Imaging 2020;39(8):2653–63.
- [19] Fan DP, Zhou T, Ji GP, Zhou Y, Chen G, Fu H, et al. Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE Trans Med Imaging 2020;39(8):2626–37.
- [20] Amyar A, Modzelewski R, Li H, Ruan S. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput Biol Med 2020;126 104037.
- [21] Zhou L, Li Z, Zhou J, Li H, Chen Y, Huang Y, et al. A Rapid, Accurate and Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis. IEEE Trans Med Imaging 2020;39(8):2638–52.
- [22] Zheng B, Liu Y, Zhu Y, Yu F, Jiang T, Yang D, et al. MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT. IEEE Access 2020;8:185786–95.
- [23] Wang X, Deng X, Fu Q, Zhou Q, Feng J, Ma H, et al. A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT. IEEE Trans Med Imaging 2020;39(8):2615–25.
- [24] Chen X, Yao L, Zhang Y. Residual Attention U-Net for Automated Multi-Class Segmentation of COVID-19 Chest CT Images. 2020a. ArXiv:2004.05645.
- [25] Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, et al. A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19). European radiology 2021a;:1–9.
- [26] Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. medRxiv 2020b.
- [27] Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Architecture for. Med Image Segmentation 2018. arXiv:1807.10165.
- [28] Wang B, Jin S, Yan Q, Xu H, Luo C, Wei L, et al. AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system. Appl Soft Computing 2021;98 106897.
- [29] Minaee S, Kafieh R, Sonka M, Yazdani S, Jamalipour Soufi G. Deep-COVID: Predicting COVID-19 from chest X-Ray images using deep transfer learning. Med Image Anal 2020;65 101794.
- [30] Narayan Das N, Kumar N, Kaur M, Kumar V, Singh D. Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-Rays. IRBM 2020.
- [31] Khan AI, Shah JL, Bhat MM. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest X-Ray images. Comput Methods Programs Biomed 2020;196 105581.
- [32] Xception Chollet F. Deep Learning with Depthwise Separable Convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). p. 1800–7.
- [33] Abraham B, Nair MS. Computer-aided detection of COVID-19 from X-Ray images using multi-CNN and Bayesnet classifier. Biocybernetics Biomed Eng 2020;40(4):1436–45.
- [34] Heidari M, Mirniaharikandehei S, Khuzani AZ, Danala G, Qiu Y, Zheng B. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-Ray images with preprocessing algorithms. Int J Med Informatics 2020;144 104284.
- [35] Ghoshal B, Tucker A. Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19). Detection 2020. arXiv:2003.10769.
- [36] Foysal Haque K, Farhan Haque F, Gandy L, Abdelgawad A. Automatic Detection of COVID-19 from Chest X-Ray Images with Convolutional Neural Networks. In: 2020 International Conference on Computing, Electronics Communications Engineering (iCCECE). p. 125–30.
- [37] Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR. CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved COVID-19 Detection. IEEE Access 2020;8:91916–23.
- [38] Wang L, Wong A. COVID-Net A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. Sci Rep 2020;10.
- [39] Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X, et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nature Commun 2020;11.
- [40] Hassantabar S, Ahmadi M, Sharifi A. Diagnosis and detection of infected tissue of COVID-19 patients based on lung X-Ray image using convolutional neural network approaches. Chaos, Solitons Fractals 2020;140 110170.
- [41] Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G. Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quantitative Imaging Med Surgery 2020;10(6):1275–85.
- [42] COVID-19 CT Segmentation Dataset. Accessed Jan 15th 2021. https://medicalsegmentation.com/covid19/.
- [43] Cohen JP, Morrison P, Dao L. COVID-19 Image Data Collection. 2020a. ArXiv:2003.11597.
- [44] Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M. COVID-19 Image Data Collection: Prospective Predictions Are the Future. arXiv 200611988 2020b.
- [45] Mooney P. Chest X-Ray Images (Pneumonia). 2020. https:// www.kaggle.com/paultimothymooney/chest-xraypneumonia.
- [46] Gupta R. COVID19 classifier dataset. 2020. https://www. kaggle.com/rgaltro/newdataset.
- [47] Kermany D, Zhang K, Goldbaum M. Labeled Optical Coherence Tomography(OCT) and Chest X-Ray Images for Classification. 2018.
- [48] Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, et al. Deep learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT images. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5555;01(01):1–1.
- [49] Zhang J, Xie Y, Pang G, Liao Z, Verjans J, Li W, et al. Viral Pneumonia Screening on Chest X-Ray Images Using Confidence-Aware Anomaly Detection. 2020b. ArXiv:2003.12338.
- [50] Abdani SR, Zulkifley MA, Hani Zulkifley N. A Lightweight Deep Learning Model for COVID-19 Detection. In: 2020 IEEE Symposium on Industrial Electronics Applications (ISIEA). p. 1–5.
- [51] Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-Ray images. Pattern Recogn Lett 2020;138:638–43.
- [52] Narin A, Kaya C, Pamuk Z. Automatic Detection of Coronavirus Disease (COVID-19) Using X-Ray Images and Deep Convolutional Neural Networks. 2020. arXiv:2003.10849.
- [53] Panwar H, Gupta P, Siddiqui MK, Morales-Menendez R, Singh V. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos, Solitons Fractals 2020;138 109944.
- [54] Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. Automated detection of COVID-19 cases using deep neural networks with X-Ray images. Comput Biol Med 2020;121 103792.
- [55] Jain G, Mittal D, Thakur D, Mittal MK. A deep learning approach to detect COVID-19 coronavirus with X-Ray images. Biocybern Biomed Eng 2020;40(4):1391–405.
- [56] Khishe M, Caraffini F, Kuhn S. Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-Ray Images. Mathematics 2021;9(9).
- [57] Joshi RC, Yadav S, Pathak VK, Malhotra HS, Khokhar HVS, Parihar A, et al. A deep learning-based COVID-19 automatic diagnostic framework using chest X-Ray images. Biocybern Biomed Eng 2021;41(1):239–54.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bde2ba8-bad3-4312-917d-7202ada90a5e