PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Biosorption Proficiency in Intact and Autoclaved Biofilm Matrices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The urgent need for technological innovation to combat water pollution underscores the significance of biosorption as a potential solution. The success of biosorption hinges on the careful selection of a suitable biosorbent. Biofilms, composed of microbial communities, emerge as a promising alternative due to their expansive adsorption capacity and ready availability. In practical applications, biosorption is often executed at pollutant concentrations lethal to microbes. Consequently, comprehending the biosorption potential of biofilms with deceased microbes becomes imperative. Notably, biofilms with deceased microbes offer the added advantage of minimizing the risk of pathogenic microbial contamination. Despite this, studies are scarce comparing biosorption between intact biofilms and those with deceased microbes. This comparative analysis could enhance the feasibility of biofilms in biosorption as an eco-aquatic technology for alleviating aquatic pollution. This study aims to scrutinize the biosorption characteristics of intact biofilm (with living microbes) and autoclaved biofilm (with deceased microbes). The methods employed for analyzing biosorption characteristics encompass examining electric charge properties, FTIR spectra analysis, ion adsorption, and ion desorption. The model ions chosen for this study are K⁺ (monovalent ion) and Mg²⁺ (divalent ion). Results indicate that the biofilm’s electric charge properties and adsorption capacity remain relatively unchanged post-autoclaving. Based on these findings, it can be concluded that biofilms, whether intact or autoclaved, present substantial potential as biosorbents in the advancement of eco-aquatic technology for mitigating water pollution.
Rocznik
Strony
131--141
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Microbial Resources and Biotechnology Research Group, Graduate School of University of Brawijaya, 65145, Malang, Indonesia
  • Faculty of Fisheries and Marine Science, University of Brawijaya, 65145, Malang, Indonesia
  • Microbial Resources and Biotechnology Research Group, Graduate School of University of Brawijaya, 65145, Malang, Indonesia
  • Faculty of Fisheries and Marine Science, University of Brawijaya, 65145, Malang, Indonesia
  • Microbial Resources and Biotechnology Research Group, Graduate School of University of Brawijaya, 65145, Malang, Indonesia
  • Faculty of Fisheries and Marine Science, University of Brawijaya, 65145, Malang, Indonesia
  • Microbial Resources and Biotechnology Research Group, Graduate School of University of Brawijaya, 65145, Malang, Indonesia
  • College of Life Science, Ritsumeikan University, 525-0058, Kusatsu-Shiga, Japan
Bibliografia
  • 1. Anggayasti W.L., Salamah L.N.M., Rizkymaris A., Yamamoto T., Kurniawan A. 2023. The role of ion charge density and solubility in the biosorption of heavy metals by natural biofilm matrix of polluted freshwater: the cases of Mg(II), Cr(VI), and Cu(II). Environmental Pollutants and Bioavailability, 35(1), 2220571.
  • 2. Bhagwat G., Tran T.K.A., Lamb D., Senathirajah K., Grainge I., O’Connor W., Palanisami T. 2021. Biofilms enhance the adsorption of toxic contaminants on plastic microfibers under environmentally relevant conditions. Environmental Science & Technology, 55(13), 8877-8887.
  • 3. Catania V., Lopresti F., Cappello S., Scaffaro R., Quatrini P. 2020. Innovative, ecofriendly biosorbentbiodegrading biofilms for bioremediation of oil-contaminated water. New Biotechnology, 58, 25-31.
  • 4. Dar S.A., Bhat R.A. 2020. Aquatic pollution stress and role of biofilms as environment cleanup technology. Fresh Water Pollution Dynamics and Remediation, 293-318.
  • 5. Dey S., Charan S.S., Pallavi U., Sreenivasulu A., Haripavan N. 2022. The removal of ammonia from contaminated water by using various solid waste biosorbents. Energy Nexus, 7, 100119.
  • 6. Dutta D., Sit N. 2023. Comparison of properties of f ilms prepared from casein modified by ultrasound and autoclave treatment. Journal of Food Measurement and Characterization, 17(5), 5426-5439.
  • 7. Flemming H.C., van Hullebusch E.D., Neu T.R., Nielsen P.H., Seviour T., Stoodley P., Wuertz S. 2023. The biofilm matrix: Multitasking in a shared space. Nature Reviews Microbiology, 21(2), 70-86.
  • 8. Garg T., Hamilton S.E., Hochard J.P., Kresch E.P., Talbot J. 2018. (Not so) gently down the stream: River pollution and health in Indonesia. Journal of Environmental Economics and Management, 92, 35-53.
  • 9. Han A., Tsoi J.K., Matinlinna J.P., Zhang Y., Chen Z. 2018. Effects of different sterilization methods on surface characteristics and biofilm formation on zirconia in vitro. Dental Materials, 34(2), 272-281.
  • 10. Hansima M.A.C.K., Makehelwala M., Jinadasa K.B.S.N., Wei Y., Nanayakkara K.G.N., HLerath A.C., Weerasooriya R. 2021. Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review. Chemosphere, 263, 127951.
  • 11. Herzberg M., Pandit S., Mauter M.S., Oren Y. 2020. Bacterial biofilm formation on ion exchange membranes. Journal of Membrane Science, 596, 117564.
  • 12. Jasu A., Ray R.R. 2021. Biofilm mediated strategies to mitigate heavy metal pollution: A critical review in metal bioremediation. Biocatalysis and Agricultural Biotechnology, 37, 102183.
  • 13. Ji J., Zhao T., Li F. 2022. Remediation technology towards zero plastic pollution: Recent advance and perspectives. Environmental Pollution, 313, 120166.
  • 14. Jiang R., Huang S., Wang W., Liu Y., Pan Z., Sun X., Lin C. 2020. Heavy metal pollution and ecological risk assessment in the Maowei sea mangrove, China. Marine Pollution Bulletin, 161, 111816.
  • 15. Kulkarni R.M., Dhanyashree J.K., Varma E., Sirivibha S.P. 2022. Batch and continuous packed bed column studies on biosorption of nickel (II) by sugarcane bagasse. Results in Chemistry, 4, 100328.
  • 16. Kurniawan A., Fukuda Y. 2023. Analysis of the electric charge properties of biofilm for the development of biofilm matrices as biosorbents for water pollutant. Energy, Ecology and Environment, 8(1), 62-68.
  • 17. Kurniawan A., Ulfa S.M., Chamidah C. 2022. The biosorption of copper (II) using a natural biofilm formed on the stones from the Metro River, Malang City, Indonesia. International Journal of Microbiology, 2022.
  • 18. Kurniawan A., Yamamoto T. 2019. Accumulation of and inside biofilms of natural microbial consortia: implication on nutrients seasonal dynamic in aquatic ecosystems. International Journal of Microbiology, 2019.
  • 19. Kurniawan A., Yamamoto, T., Ekawati A.W., Salamah L.N.M., Amin A.A., Yanuar A.T. 2022. Characteristics of Cd(II) biosorption into streamer biof ilm matrices. International Journal of Technology, 13(2), 367-377.
  • 20. Leininger A., Yates M.D., Ramirez M., Kjellerup B. 2021. Biofilm structure, dynamics, and ecology of an upscaled biocathode wastewater microbial fuel cell. Biotechnology and Bioengineering, 118(3), 1305-1316.
  • 21. Li Y., Qu Y., Yang H., Zhou X., Xiao P., Shao T. 2023. Combatting biofilms in potable water systems: A comprehensive overview to ensuring industrial water safety. Environmental Microbiology Reports, 15(6), 445-454.
  • 22. Luo X., Yang Y., Xie S., Wang W., Li N., Wen C., Chen L. 2022. Drying and rewetting induce changes in biofilm characteristics and the subsequent release of metal ions. Journal of Hazardous Materials, 433, 128832.
  • 23. Manobala T., Shukla S.K., Rao T.S., Kumar M.D. 2021. Kinetic modelling of the uranium biosorption by Deinococcus radiodurans biofilm. Chemosphere, 269, 128722.
  • 24. Michelon A., Bortoluz J., Raota C.S., Giovanela M. 2022. Agro-industrial residues as biosorbents for the removal of anti-inflammatories from aqueous matrices: An overview. Environmental Advances, 9, 100261.
  • 25. Mishra S., Huang Y., Li J., Wu X., Zhou Z., Lei Q., Chen S. 2022. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere, 294, 133609.
  • 26. Obaideen K., Shehata N., Sayed E.T., Abdelkareem M.A., Mahmoud M.S., Olabi A.G. 2022. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7, 100112.
  • 27. Philipp L. A., Bühler K., Ulber R., Gescher J. 2023. Beneficial applications of biofilms. Nature Reviews Microbiology, 1-15.
  • 28. Pourang N., Rezaei M. 2021. Biosorption of copper from aqueous environment by three aquatics-based sorbents: A comparison of the relative effect of seven important parameters. Bioresource Technology Reports, 15, 100718.
  • 29. Priya A.K., Gnanasekaran L., Dutta K., Rajendran S., Balakrishnan D., Soto-Moscoso M. 2022. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere, 307, 135957.
  • 30. Qais F.A., Khan M.S., Ahmad I., Husain F.M., AlKheraif A.A., Arshad M., Alam P. 2021. Plumbagin inhibits quorum sensing-regulated virulence and biofilms of Gram-negative bacteria: in vitro and in silico investigations. Biofouling, 37(7), 724-739.
  • 31. Qiongjie W., Yong Z., Yangyang Z., Zhouqi L., Jinxiaoxue W., Huijuan, C. 2022. Effects of biofilm on metal adsorption behavior and microbial community of microplastics. Journal of Hazardous Materials, 424, 127340.
  • 32. Saeed M.U., Hussain N., Sumrin A., Shahbaz A., Noor S., Bilal M., Iqbal H. M. 2022. Microbial bioremediation strategies with wastewater treatment potentialities – A review. Science of the total environment, 818, 151754.
  • 33. Sharma A., Jamali H., Vaishnav A., Giri B.S., Srivastava A.K. 2020. Microbial biofilm: An advanced ecofriendly approach for bioremediation. In: New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms. 205-219.
  • 34. Singh S., Kumar V., Datta S., Dhanjal D.S., Sharma K., Samuel J., Singh J. 2020. Current advancement and future prospect of biosorbents for bioremediation. Science of the Total Environment, 709, 135895.
  • 35. Syed Z., Sogani M., Rajvanshi J., Sonu K. 2023. Microbial biofilms for environmental bioremediation of heavy metals: a review. Applied Biochemistry and Biotechnology, 195(9), 5693-5711.
  • 36. Thirunavukkarasu A., Nithya R., Sivashankar R. 2021. Continuous fixed-bed biosorption process: A review. Chemical Engineering Journal Advances, 8, 100188.
  • 37. Torres E. 2020. Biosorption: A review of the latest advances. Processes, 8(12), 1584.
  • 38. Wang R., Zhang Q., Zhan L., Xu Z. 2022. Urgency of technology and equipment upgrades in e-waste dismantling base: Pollution identification and emission reduction. Environmental Pollution, 308, 119704.
  • 39. Wang Z., Luo P., Zha X., Xu C., Kang S., Zhou M., Wang Y. 2022. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. Journal of Cleaner Production, 308, 134043.
  • 40. Wang Y., Samaranayake L.P., Dykes G.A. 2021. Plant components affect bacterial biofilms development by altering their cell surface physicochemical properties: a predictability study using Actinomyces naeslundii. FEMS Microbiology Ecology, 97(1).
  • 41. Xu Y., Ou Q., Zhou X., He Q., Wu Z., Huang R., Huangfu X. 2020. Impacts of carrier properties, environmental conditions and extracellular polymeric substances on biofilm formation of sieved fine particles from activated sludge. Science of the Total Environment, 731, 139196.
  • 42. Yadav A.K., Yadav H.K., Naz A., Koul M., Chowdhury A., Shekhar, S. 2022. Arsenic removal technologies for middle-and low-income countries to achieve the SDG-3 and SDG-6 targets: A review. Environmental Advances, 9, 100262.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bdbe043-0540-400a-9d3d-26df05f77fa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.